色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

電源會產生EMI 根源是什么以及有何緩解措施?

h1654155971.8456 ? 來源:面包板 ? 作者:面包板 ? 2021-04-12 10:47 ? 次閱讀

有限且不斷縮小的電路板空間、緊張的設計周期以及嚴格的電磁干擾(EMI)規范(例如CISPR 32和CISPR 25)這些限制因素,都導致獲得具有高效率和良好熱性能電源的難度很大。

在整個設計周期中,電源設計通?;咎幱谠O計過程的最后階段,設計人員需要努力將復雜的電源擠進更緊湊的空間,這使問題變得更加復雜,非常令人沮喪。為了按時完成設計,只能在性能方面做些讓步,把問題丟給測試和驗證環節去處理。簡單、高性能和解決方案尺寸三個考慮因素通常相互沖突:只能優先考慮一兩個,而放棄第三個,尤其當設計期限臨近時。犧牲一些性能變得司空見慣;其實不應該是這樣的。

本文首先概述了在復雜的電子系統中電源帶來的嚴重問題:即EMI,通常簡稱為噪聲。電源會產生EMI,必須加以解決,那么問題的根源是什么?通常有何緩解措施?本文介紹減少EMI的策略,提出了一種解決方案,能夠減少EMI、保持效率,并將電源放入有限的解決方案空間中。

1什么是EMI?

電磁干擾是會干擾系統性能的電磁信號。這種干擾通過電磁感應、靜電耦合或傳導來影響電路。它對汽車、醫療以及測試與測量設備制造商來說,是一項關鍵設計挑戰。上面提到的許多限制和不斷提高的電源性能要求(功率密度增加、開關頻率更高以及電流更大)只會擴大EMI的影響,因此亟需解決方案來減少EMI。許多行業都要求必須滿足EMI標準,如果在設計初期不加以考慮,則會嚴重影響產品的上市時間。

2EMI耦合類型

EMI是電子系統中的干擾源與接收器(即電子系統中的一些元件)耦合時所產生的問題。EMI按其耦合介質可歸類為:傳導或輻射。

傳導EMI(低頻,450 kHz至30 MHz)

傳導EMI通過寄生阻抗以及電源和接地連接以傳導方式耦合到元件。噪聲通過傳導傳輸到另一個器件或電路。傳導EMI可以進一步分為共模噪聲和差模噪聲。

共模噪聲通過寄生電容和高dV/dt (C × dV/dt)進行傳導。它通過寄生電容沿著任意信號(正或負)到GND的路徑傳輸,如圖1所示。

DifferenTIal-mode noise is conducted via parasiTIc inductance (magneTIc coupling) and a high di/dt (L × di/dt)。

差模噪聲通過寄生電感(磁耦合)和高di/dt (L × di/dt)進行傳導。

514ea546-9ab5-11eb-8b86-12bb97331649.jpg

圖1.差模和共模噪聲

輻射EMI(高頻,30 MHz 至1 GHz)

輻射EMI是通過磁場能量以無線方式傳輸到待測器件的噪聲。在開關電源中,該噪聲是高di/dt與寄生電感耦合的結果。輻射噪聲會影響鄰近的器件。

3EMI控制技術

解決電源中EMI相關問題的典型方法是什么?首先,確定EMI就是一個問題。這看似很顯而易見,但是確定其具體情況可能非常耗時,因為它需要使用EMI測試室(并非隨處都有),以便對電源產生的電磁能量進行量化,并確定該電磁能量是否符合系統的EMI標準要求。 假設經過測試,電源會帶來EMI問題,那么設計人員將面臨通過多種傳統的校正策略來減少EMI的過程,其中包括:

在盡可能小的電路板空間中實現高效率。

良好的熱性能。

布局優化:精心的電源布局與選擇合適的電源組件同樣重要。成功的布局很大程度上取決于電源設計人員的經驗水平。布局優化本質上是個迭代過程,經驗豐富的電源設計人員有助于最大限度地減少迭代次數,從而避免耽誤時間和產生額外的設計成本。問題是:內部人員往往不具備這些經驗。

緩沖器:一些設計人員會提前規劃并為簡單的緩沖器電路(從開關節點到GND的簡單RC濾波器)提供占位面積。這樣可以抑制開關節點的振鈴現象(一項產生EMI的因素),但是這種技術會導致損耗增加,從而對效率產生負面影響。

降低邊沿速率:減少開關節點的振鈴也可以通過降低柵極導通的壓擺率來實現。不幸的是,與緩沖器類似,這會對整個系統的效率產生負面影響。

展頻(SSFM):許多ADI公司的Power by Linear開關穩壓器都提供該特性,它有助于產品設計通過嚴格的EMI測試標準。采用SSFM技術,在已知范圍內(例如,編程頻率fSW上下±10%的變化范圍)對驅動開關頻率的時鐘進行調制。這有助于將峰值噪聲能量分配到更寬的頻率范圍內。

濾波器和屏蔽:濾波器和屏蔽總是會占用大量的成本和空間。它們也使生產復雜化。

以上所有制約措施都可以減少噪聲,但是它們也都存在缺陷。最大限度地減少電源設計中的噪聲通常能夠徹底解決問題,但卻很難實現。ADI公司的Silent Switcher和Silent Switcher 2穩壓器在穩壓器端實現了低噪聲,從而無需額外的濾波、屏蔽或大量布局迭代。由于不必采用昂貴的反制措施,加快了產品上市時間并節省大量的成本。

3.1 最大限度地減小電流回路

為了減少EMI,必須確定電源電路中的熱回路(高di/dt回路)并減少其影響。熱回路如圖2所示。在標準降壓轉換器的一個周期內,當M1關閉而M2打開時,交流電流沿著藍色回路流動。在M1打開而M2關閉的關閉周期中,電流沿著綠色回路流動。產生最高EMI的回路并非完全直觀可見,它既不是藍色回路也不是綠色回路,而是傳導全開關交流電流(從零切換到IPEAK,然后再切換回零)的紫色回路。該回路稱為熱回路,因為它的交流和EMI能量最大。

導致電磁噪聲和開關振鈴的是開關穩壓器熱回路中的高di/dt和寄生電感。要減少EMI并改進功能,需要盡量減少紫色回路的輻射效應。熱回路的電磁輻射騷擾隨其面積的增加而增加,因此,如果可能的話,將熱回路的PC面積減小到零,并使用零阻抗理想電容可以解決該問題。

51656150-9ab5-11eb-8b86-12bb97331649.jpg

圖2.降壓轉換器的熱回路

3.2 使用Silent Switcher穩壓器實現低噪聲磁場抵消

雖然不可能完全消除熱回路區域,但是我們可以將熱回路分成極性相反的兩個回路。這可以有效地形成局部磁場,這些磁場在距IC任意位置都可以有效地相互抵消。這就是Silent Switcher穩壓器背后的概念。

516e8d84-9ab5-11eb-8b86-12bb97331649.jpg

圖3.Silent Switcher穩壓器中的磁場抵消

3.3 倒裝芯片取代鍵合線

改善EMI的另一種方法是縮短熱回路中的導線。這可以通過放棄將芯片連接至封裝引腳的傳統鍵合線方法來實現。在封裝中倒裝硅芯片,并添加銅柱。通過縮短內部FET到封裝引腳和輸入電容的距離,可以進一步縮小熱回路的范圍。

圖4.LT8610鍵合線的拆解示意圖。

圖5.帶有銅柱的倒裝芯片 Silent Switcher與Silent Switcher 2

52325a3e-9ab5-11eb-8b86-12bb97331649.jpg

圖6.典型的Silent Switcher應用原理圖及其在PCB上的外觀

圖6顯示了使用Silent Switcher穩壓器的一個典型應用,可通過兩個輸入電壓引腳上的對稱輸入電容來識別。布局在該方案中非常重要,因為Silent Switcher技術要求盡可能將這些輸入電容對稱布置,以便發揮場相互抵消的優勢。否則,將喪失Silent Switcher技術的優勢。當然,問題是如何確保在設計及整個生產過程中的正確布局。答案就是Silent Switcher 2穩壓器。

3.4 Silent Switcher 2

Silent Switcher 2穩壓器能夠進一步減少EMI。通過將電容(VIN電容、INTVCC和升壓電容)集成到LQFN封裝中,消除了EMI性能對PCB布局的敏感性,從而可以放置到盡可能靠近引腳的位置。所有熱回路和接地層都在內部,從而將EMI降至最低,并使解決方案的總占板面積更小。

52685012-9ab5-11eb-8b86-12bb97331649.jpg

圖7.Silent Switcher應用與Silent Switcher 2應用框圖

52786146-9ab5-11eb-8b86-12bb97331649.jpg

圖8.去封的LT8640S Silent Switcher 2穩壓器

Silent Switcher 2技術還可以改善熱性能。LQFN倒裝芯片封裝上的多個大尺寸接地裸露焊盤有助于封裝通過PCB散熱。消除高電阻鍵合線還可以提高轉換效率。在進行EMI性能測試時,LT8640S 能滿足CISPR 25 Class 5峰值限制要求,并且具有較大的裕量。

3.5 μModule Silent Switcher穩壓器

借助開發Silent Switcher產品組合所獲得的知識和經驗,并配合使用現有的廣泛μModule產品組合,使我們提供的電源產品易于設計,同時滿足電源的某些重要指標要求,包括熱性能、可靠性、精度、效率和良好的EMI性能。 圖9所示的LTM8053集成了可實現磁場抵消的兩個輸入電容以及電源所需的其他一些無源組件。所有這些都通過一個 6.25 mm × 9 mm × 3.32 mm BGA封裝實現,讓客戶可以專心完成電路板的其他部分設計。

52852f66-9ab5-11eb-8b86-12bb97331649.jpg

圖9.LTM8053 Silent Switcher裸露芯片及EMI結果。

3.6 無需LDO穩壓器——電源案例研究

典型的高速ADC需要許多電壓軌,其中一些電壓軌噪聲必須非常低才能實現ADC數據表中的最高性能。 為了在高效率、小尺寸板空間和低噪聲之間達成平衡,普遍接受的解決方案是將開關電源與LDO后置穩壓器結合使用,如圖10所示。開關穩壓器能夠以更高效率實現更高的降壓比,但噪聲相對也較大。

低噪聲LDO后置穩壓器效率相對較低,但它可以抑制開關穩壓器產生的大部分傳導噪聲。盡可能減小LDO后置穩壓器的降壓比有助于提高效率。這種組合能產生干凈的電源,從而使ADC以最高性能運行。但問題在于多個穩壓器會使布局更復雜,并且LDO后置穩壓器在較高負載下可能會產生散熱問題。

52c42784-9ab5-11eb-8b86-12bb97331649.jpg

圖10.為 AD9625 ADC供電的典型電源設計

圖10所示的設計顯然需要進行一些權衡取舍。在這種情況下,低噪聲是優先考慮事項,因此效率和電路板空間必須做些讓步。但也許不必如此。最新一代的Silent Switcher μModule器件將低噪聲開關穩壓器設計與μModule封裝相結合,能夠同時實現易設計、高效率、小尺寸和低噪聲的目標。這些穩壓器不僅盡可能減少了電路板占用空間,而且實現了可擴展性,可使用一個μModule穩壓器為多個電壓軌供電,進一步節省了空間和時間。圖11顯示了使用LTM8065 Silent Switcher μModule穩壓器為ADC供電的電源樹替代方案。

52f53400-9ab5-11eb-8b86-12bb97331649.jpg

圖11.使用Silent Switcher μModule穩壓器為AD9625供電,可節省空間的解決方案 這些設計都已經過相互測試比較。ADI公司最近發表的一篇文章對使用圖10和圖11所示電源設計的ADC性能進行了測試和比較1。測試包括以下三種配置:

使用開關穩壓器和LDO穩壓器為ADC供電的標準配置。

使用LTM8065直接為ADC供電,不進行進一步的濾波。

使用LTM8065和額外的輸出LC濾波器,進一步凈化輸出。

測得的SFDR和SNRFS結果表明,LTM8065可用于直接為ADC供電,并不會影響ADC的性能。 這個實施方案的核心優勢是大大減少了元件數量,從而提高了效率,簡化了生產并減少了電路板占位空間。

4小結

總之,隨著更多系統級設計需要滿足更加嚴格的規范,盡可能充分利用模塊化電源設計變得至關重要,尤其在電源設計專業經驗有限的情況下。由于許多細分市場要求系統設計必須符合最新的EMI規范要求,因此將Silent Switcher技術運用于小尺寸設計,同時借助μModule穩壓器簡單易用的特性,可以大大縮短產品上市時間,同時還可以節省電路板空間。 Silent Switcher μModule穩壓器的優勢

節省PCB布局設計時間(無需重新設計電路板即可解決噪聲問題)。

無需額外的EMI濾波器(節省元件和電路板空間成本)。

降低了內部電源專家進行電源噪聲調試的需求。

在寬工作頻率范圍內提供高效率。

為噪聲敏感型器件供電時,無需使用LDO后置穩壓器。

縮短設計周期。

在盡可能小的電路板空間中實現高效率。

良好的熱性能。

編輯:jq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • pcb
    pcb
    +關注

    關注

    4319

    文章

    23111

    瀏覽量

    398245
  • emi
    emi
    +關注

    關注

    53

    文章

    3591

    瀏覽量

    127751
  • ldo
    ldo
    +關注

    關注

    35

    文章

    1942

    瀏覽量

    153459

原文標題:電源會產生EMI,根源是什么?

文章出處:【微信號:eda365wx,微信公眾號:EDA365電子論壇】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    非線性負載為什么產生諧波?

    諧波。開關電源在現代電子設備中廣泛應用,其高頻開關動作產生高次諧波。 諧波的產生主要由于非線性負載的存在。這些負載在電力系統中引入的諧波會對電網的穩定性、電能質量
    的頭像 發表于 12-10 15:41 ?223次閱讀
    非線性負載為什么<b class='flag-5'>會</b><b class='flag-5'>產生</b>諧波?

    開關電源EMI等效分析

    開關電源之--EMI等效分析 一、開關電源傳導EMI 產生根源 1、測試傳導
    的頭像 發表于 12-06 10:32 ?634次閱讀
    開關<b class='flag-5'>電源</b>之<b class='flag-5'>EMI</b>等效分析

    音頻信號失真的根源是什么?

    一般產生這種失真的根源是什么
    發表于 10-28 06:25

    EMI濾波電路對PC電源的影響哪些

    EMI濾波電路,本質上是一種低通濾波器,它的主要任務是濾除輸入市電中的高頻雜波。這些雜波可能來源于電網中的其他設備,也可能由電源本身產生。通過EMI濾波電路的過濾,只有純凈的50Hz交
    的頭像 發表于 09-26 17:02 ?369次閱讀

    emi濾波器的工作原理是什么

    的來源 電磁干擾(EMI)是指在電子設備中產生的電磁波對其他設備或系統產生的干擾。EMI的來源主要包括以下幾種: 1.1.1 電源干擾:
    的頭像 發表于 08-25 14:36 ?1100次閱讀

    開關電源的噪聲是如何產生的?

    產生的電流及電壓,可通過兩個公式求得。 此振鈴作為高頻開關噪聲帶來各種影響。雖然采取相應的措施,但由于無法從電源IC處去除安裝電路板的寄
    發表于 04-02 10:28

    EMI(電磁干擾):原理、影響與應對措施?

    EMI(電磁干擾):原理、影響與應對措施?|深圳比創達電子EMC
    的頭像 發表于 03-26 11:22 ?2422次閱讀
    <b class='flag-5'>EMI</b>(電磁干擾):原理、影響與應對<b class='flag-5'>措施</b>?

    開關電源產生電磁干擾的原因哪些

    高頻開關電流和電壓:開關電源中的開關元件(如晶體管、MOSFET等)以高頻(通常在幾十千赫茲到幾百千赫茲)進行開關操作。這些快速切換產生陡峭的電流和電壓波形,其包含豐富的高頻諧波分量。這些諧波可以通過
    的頭像 發表于 02-16 17:11 ?2861次閱讀

    開關電源產生的噪聲哪些

    不良影響。 首先,我們來了解一下開關電源的工作原理。開關電源通過高頻開關管將輸入電壓轉換為高頻脈沖電壓,然后通過變壓器和濾波器將高頻脈沖電壓轉換為所需的輸出電壓。在這個過程中,開關管的快速導通和關斷
    的頭像 發表于 02-05 09:36 ?911次閱讀
    開關<b class='flag-5'>電源</b><b class='flag-5'>產生</b>的噪聲<b class='flag-5'>有</b>哪些

    什么是電源適配器的浪涌電流?浪涌電流對電源適配器影響?

    什么是電源適配器的浪涌電流?浪涌電流對電源適配器影響? 電源適配器的浪涌電流是指在電源啟動或
    的頭像 發表于 01-30 16:38 ?1655次閱讀

    電磁兼容EMI優化方案分享

    在開關電源的設計中,電路設計和電路板布局是解決EMI問題的兩個關鍵點。在電路設計中,開關頻率以及開關節點上的振鈴(圖1)產生電磁干擾(EM
    發表于 01-21 09:38 ?1077次閱讀
    電磁兼容<b class='flag-5'>EMI</b>優化方案分享

    電源中的EMI和EMC什么區別?

    電源中的EMI和EMC什么區別? 電源中的EMI和EMC是與電磁干擾相關的兩個概念,盡管它們
    的頭像 發表于 01-19 11:47 ?1703次閱讀

    超出電源的輸入電壓范圍產生什么問題?

    超出電源的輸入電壓范圍產生什么問題? 超出電源的輸入電壓范圍,即輸入電壓過高或過低,會對電源本身和連接的電子設備
    的頭像 發表于 01-19 11:39 ?7536次閱讀

    EMI產生原因哪些

    電磁干擾(EMI)是指任何可能導致設備、系統或網絡性能降低的電磁現象。EMI源頭是指產生這些電磁干擾的原因和來源。了解EMI源頭對于確保電子設備和通信系統的正常運行至關重要,因為它們可
    的頭像 發表于 01-16 15:56 ?1318次閱讀
    <b class='flag-5'>EMI</b><b class='flag-5'>產生</b>原因<b class='flag-5'>有</b>哪些

    設計開關電源時防止EMI措施總結

    作為工作于開關狀態的能量轉換裝置,開關電源的電壓、電流變化率很高,產生的干擾強度較大;干擾源主要集中在功率開關期間以及與之相連的散熱器和高平變壓器,相對于數字電路干擾源的位置較為清楚。
    的頭像 發表于 01-08 11:36 ?591次閱讀
    設計開關<b class='flag-5'>電源</b>時防止<b class='flag-5'>EMI</b>的<b class='flag-5'>措施</b>總結
    主站蜘蛛池模板: 亚洲 天堂 欧美 日韩 国产| 寂寞少妇直播| 少妇无码太爽了视频在线播放 | 国产 浪潮AV性色四虎| 在线看免费毛片| 午夜色网站| 日本人的xxxxxxxxx69| 老师在讲桌下边h边讲课| 国产欧美一区二区三区在线看| jjzz大全| 91久久夜色精品| 又黄又粗又爽免费观看| 亚洲av欧美在我| 熟妇少妇任你躁在线无码| 欧美黄色第一页| 恋夜影院支持安卓视频美女| 好爽胸大好深好多水| 国产精品ⅴ视频免费观看| 成年美女黄网站色app| 99久久综合| 90后美女乳沟| 在线观看亚洲 日韩 国产| 亚洲无码小格式| 亚洲高清无在码在线无弹窗| 宿舍BL 纯肉各种PLAY H| 日本亚洲精品色婷婷在线影院| 欧美 另类 美腿 亚洲 无码| 蜜柚影院在线观看免费高清中文 | 久久亚洲网站| 九九热这里只有精品2| 国拍在线精品视频免费观看| 国产精品亚洲一区二区三区久久| 帝王受PLAY龙椅高肉NP| 成人精品视频99在线观看免费| 99这里只有是精品2| 99精品小视频| 99精品久久精品一区二区| 97免费视频观看| 99久久亚洲| 菠萝菠萝蜜高清观看在线| xxx性欧美在线观看|