色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何在OpenCV中使用基于深度學(xué)習(xí)的邊緣檢測(cè)

新機(jī)器視覺(jué) ? 來(lái)源:AI算法與圖像處理 ? 作者:AI算法與圖像處理 ? 2021-04-18 10:25 ? 次閱讀

導(dǎo)讀

分析了Canny的優(yōu)劣,并給出了OpenCV使用深度學(xué)習(xí)做邊緣檢測(cè)的流程,文末有代碼鏈接。

在這篇文章中,我們將學(xué)習(xí)如何在OpenCV中使用基于深度學(xué)習(xí)的邊緣檢測(cè),它比目前流行的canny邊緣檢測(cè)器更精確。邊緣檢測(cè)在許多用例中是有用的,如視覺(jué)顯著性檢測(cè),目標(biāo)檢測(cè),跟蹤和運(yùn)動(dòng)分析,結(jié)構(gòu)從運(yùn)動(dòng),3D重建,自動(dòng)駕駛,圖像到文本分析等等。

什么是邊緣檢測(cè)?

邊緣檢測(cè)是計(jì)算機(jī)視覺(jué)中一個(gè)非常古老的問(wèn)題,它涉及到檢測(cè)圖像中的邊緣來(lái)確定目標(biāo)的邊界,從而分離感興趣的目標(biāo)。最流行的邊緣檢測(cè)技術(shù)之一是Canny邊緣檢測(cè),它已經(jīng)成為大多數(shù)計(jì)算機(jī)視覺(jué)研究人員和實(shí)踐者的首選方法。讓我們快速看一下Canny邊緣檢測(cè)。

Canny邊緣檢測(cè)算法

1983年,John Canny在麻省理工學(xué)院發(fā)明了Canny邊緣檢測(cè)。它將邊緣檢測(cè)視為一個(gè)信號(hào)處理問(wèn)題。其核心思想是,如果你觀察圖像中每個(gè)像素的強(qiáng)度變化,它在邊緣的時(shí)候非常高。

在下面這張簡(jiǎn)單的圖片中,強(qiáng)度變化只發(fā)生在邊界上。所以,你可以很容易地通過(guò)觀察像素強(qiáng)度的變化來(lái)識(shí)別邊緣。

現(xiàn)在,看下這張圖片。強(qiáng)度不是恒定的,但強(qiáng)度的變化率在邊緣處最高。(微積分復(fù)習(xí):變化率可以用一階導(dǎo)數(shù)(梯度)來(lái)計(jì)算。)

801770a0-9fbb-11eb-8b86-12bb97331649.png

Canny邊緣檢測(cè)器通過(guò)4步來(lái)識(shí)別邊緣:

去噪:因?yàn)檫@種方法依賴于強(qiáng)度的突然變化,如果圖像有很多隨機(jī)噪聲,那么會(huì)將噪聲作為邊緣。所以,使用5×5的高斯濾波器平滑你的圖像是一個(gè)非常好的主意。

梯度計(jì)算:下一步,我們計(jì)算圖像中每個(gè)像素的強(qiáng)度的梯度(強(qiáng)度變化率)。我們也計(jì)算梯度的方向。

801ffb94-9fbb-11eb-8b86-12bb97331649.png

梯度方向垂直于邊緣,它被映射到四個(gè)方向中的一個(gè)(水平、垂直和兩個(gè)對(duì)角線方向)。

非極大值抑制:現(xiàn)在,我們想刪除不是邊緣的像素(設(shè)置它們的值為0)。你可能會(huì)說(shuō),我們可以簡(jiǎn)單地選取梯度值最高的像素,這些就是我們的邊。然而,在真實(shí)的圖像中,梯度不是簡(jiǎn)單地在只一個(gè)像素處達(dá)到峰值,而是在臨近邊緣的像素處都非常高。因此我們?cè)谔荻确较蛏先?×3附近的局部最大值。

8039549a-9fbb-11eb-8b86-12bb97331649.png

遲滯閾值化:在下一步中,我們需要決定一個(gè)梯度的閾值,低于這個(gè)閾值所有的像素都將被抑制(設(shè)置為0)。而Canny邊緣檢測(cè)器則采用遲滯閾值法。遲滯閾值法是一種非常簡(jiǎn)單而有效的方法。我們使用兩個(gè)閾值來(lái)代替只用一個(gè)閾值:

高閾值 = 選擇一個(gè)非常高的值,這樣任何梯度值高于這個(gè)值的像素都肯定是一個(gè)邊緣。

低閾值 = 選擇一個(gè)非常低的值,任何梯度值低于該值的像素絕對(duì)不是邊緣。

在這兩個(gè)閾值之間有梯度的像素會(huì)被檢查,如果它們和邊緣相連,就會(huì)留下,否則就會(huì)去掉。

804523ec-9fbb-11eb-8b86-12bb97331649.jpg

遲滯閾值化

Canny 邊緣檢測(cè)的問(wèn)題:

由于Canny邊緣檢測(cè)器只關(guān)注局部變化,沒(méi)有語(yǔ)義(理解圖像的內(nèi)容)理解,精度有限(很多時(shí)候是這樣)。

804e107e-9fbb-11eb-8b86-12bb97331649.png

Canny邊緣檢測(cè)器在這種情況下會(huì)失敗,因?yàn)闆](méi)有理解圖像的上下文

語(yǔ)義理解對(duì)于邊緣檢測(cè)是至關(guān)重要的,這就是為什么使用機(jī)器學(xué)習(xí)或深度學(xué)習(xí)的基于學(xué)習(xí)的檢測(cè)器比canny邊緣檢測(cè)器產(chǎn)生更好的結(jié)果。

OpenCV中基于深度學(xué)習(xí)的邊緣檢測(cè)

OpenCV在其全新的DNN模塊中集成了基于深度學(xué)習(xí)的邊緣檢測(cè)技術(shù)。你需要OpenCV 3.4.3或更高版本。這種技術(shù)被稱為整體嵌套邊緣檢測(cè)或HED,是一種基于學(xué)習(xí)的端到端邊緣檢測(cè)系統(tǒng),使用修剪過(guò)的類似vgg的卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像到圖像的預(yù)測(cè)任務(wù)。

HED利用了中間層的輸出。之前的層的輸出稱為side output,將所有5個(gè)卷積層的輸出進(jìn)行融合,生成最終的預(yù)測(cè)。由于在每一層生成的特征圖大小不同,它可以有效地以不同的尺度查看圖像。

812ca140-9fbb-11eb-8b86-12bb97331649.png

網(wǎng)絡(luò)結(jié)構(gòu):整體嵌套邊緣檢測(cè)

HED方法不僅比其他基于深度學(xué)習(xí)的方法更準(zhǔn)確,而且速度也比其他方法快得多。這就是為什么OpenCV決定將其集成到新的DNN模塊中。以下是這篇論文的結(jié)果:

81849198-9fbb-11eb-8b86-12bb97331649.png

在OpenCV中訓(xùn)練深度學(xué)習(xí)邊緣檢測(cè)的代碼

OpenCV使用的預(yù)訓(xùn)練模型已經(jīng)在Caffe框架中訓(xùn)練過(guò)了,可以這樣加載:

shdownload_pretrained.sh

網(wǎng)絡(luò)中有一個(gè)crop層,默認(rèn)是沒(méi)有實(shí)現(xiàn)的,所以我們需要自己實(shí)現(xiàn)一下。

classCropLayer(object): def__init__(self,params,blobs): self.xstart=0 self.xend=0 self.ystart=0 self.yend=0 #Ourlayerreceivestwoinputs.Weneedtocropthefirstinputblob #tomatchashapeofthesecondone(keepingbatchsizeandnumberofchannels) defgetMemoryShapes(self,inputs): inputShape,targetShape=inputs[0],inputs[1] batchSize,numChannels=inputShape[0],inputShape[1] height,width=targetShape[2],targetShape[3] self.ystart=(inputShape[2]-targetShape[2])//2 self.xstart=(inputShape[3]-targetShape[3])//2 self.yend=self.ystart+height self.xend=self.xstart+width return[[batchSize,numChannels,height,width]] defforward(self,inputs): return[inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]]

現(xiàn)在,我們可以重載這個(gè)類,只需用一行代碼注冊(cè)該層。

cv.dnn_registerLayer('Crop',CropLayer)

現(xiàn)在,我們準(zhǔn)備構(gòu)建網(wǎng)絡(luò)圖并加載權(quán)重,這可以通過(guò)OpenCV的dnn.readNe函數(shù)。

net=cv.dnn.readNet(args.prototxt,args.caffemodel)

現(xiàn)在,下一步是批量加載圖像,并通過(guò)網(wǎng)絡(luò)運(yùn)行它們。為此,我們使用cv2.dnn.blobFromImage方法。該方法從輸入圖像中創(chuàng)建四維blob。

blob=cv.dnn.blobFromImage(image,scalefactor,size,mean,swapRB,crop)

其中:

image:是我們想要發(fā)送給神經(jīng)網(wǎng)絡(luò)進(jìn)行推理的輸入圖像。

scalefactor:圖像縮放常數(shù),很多時(shí)候我們需要把uint8的圖像除以255,這樣所有的像素都在0到1之間。默認(rèn)值是1.0,不縮放。

size:輸出圖像的空間大小。它將等于后續(xù)神經(jīng)網(wǎng)絡(luò)作為blobFromImage輸出所需的輸入大小。

swapRB:布爾值,表示我們是否想在3通道圖像中交換第一個(gè)和最后一個(gè)通道。OpenCV默認(rèn)圖像為BGR格式,但如果我們想將此順序轉(zhuǎn)換為RGB,我們可以將此標(biāo)志設(shè)置為T(mén)rue,這也是默認(rèn)值。

mean:為了進(jìn)行歸一化,有時(shí)我們計(jì)算訓(xùn)練數(shù)據(jù)集上的平均像素值,并在訓(xùn)練過(guò)程中從每幅圖像中減去它。如果我們?cè)谟?xùn)練中做均值減法,那么我們必須在推理中應(yīng)用它。這個(gè)平均值是一個(gè)對(duì)應(yīng)于R, G, B通道的元組。例如Imagenet數(shù)據(jù)集的均值是R=103.93, G=116.77, B=123.68。如果我們使用swapRB=False,那么這個(gè)順序?qū)⑹?B, G, R)。

crop:布爾標(biāo)志,表示我們是否想居中裁剪圖像。如果設(shè)置為T(mén)rue,則從中心裁剪輸入圖像時(shí),較小的尺寸等于相應(yīng)的尺寸,而其他尺寸等于或大于該尺寸。然而,如果我們將其設(shè)置為False,它將保留長(zhǎng)寬比,只是將其調(diào)整為固定尺寸大小。

在我們這個(gè)場(chǎng)景下:

inp=cv.dnn.blobFromImage(frame,scalefactor=1.0,size=(args.width,args.height), mean=(104.00698793,116.66876762,122.67891434),swapRB=False, crop=False)

現(xiàn)在,我們只需要調(diào)用一下前向方法。

net.setInput(inp) out=net.forward() out=out[0,0] out=cv.resize(out,(frame.shape[1],frame.shape[0])) out=255*out out=out.astype(np.uint8) out=cv.cvtColor(out,cv.COLOR_GRAY2BGR) con=np.concatenate((frame,out),axis=1) cv.imshow(kWinName,con)

結(jié)果:

81fddbac-9fbb-11eb-8b86-12bb97331649.png

中間的圖像是人工標(biāo)注的圖像,右邊是HED的結(jié)果

823d4954-9fbb-11eb-8b86-12bb97331649.png

中間的圖像是人工標(biāo)注的圖像,右邊是HED的結(jié)果

文中的代碼:https://github.com/sankit1/cv-tricks.com/tree/master/OpenCV/Edge_detection

英文原文:https://cv-tricks.com/opencv-dnn/edge-detection-hed/

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 邊緣檢測(cè)
    +關(guān)注

    關(guān)注

    0

    文章

    92

    瀏覽量

    18216
  • OpenCV
    +關(guān)注

    關(guān)注

    31

    文章

    635

    瀏覽量

    41373
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5504

    瀏覽量

    121221

原文標(biāo)題:基于OpenCV深度學(xué)習(xí)的邊緣檢測(cè)

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測(cè)模型

    并非易事,它涉及到從選擇合適的算法架構(gòu)到針對(duì)特定硬件平臺(tái)進(jìn)行優(yōu)化等一系列復(fù)雜的工作。 接下來(lái),我們將詳細(xì)介紹如何在資源受限的邊緣設(shè)備上成功部署目標(biāo)檢測(cè)模型,探索其背后的原理和技術(shù),并討論解決該領(lǐng)域內(nèi)常見(jiàn)
    發(fā)表于 12-19 14:33

    AI模型部署邊緣設(shè)備的奇妙之旅:如何在邊緣端部署OpenCV

    。 接下來(lái)我們通過(guò)幾個(gè)例子來(lái)介紹如何在邊緣端設(shè)備使用OpenCV進(jìn)行形狀檢測(cè)。 3.1 矩形檢測(cè) import lockzhiner_vis
    發(fā)表于 12-14 09:31

    AI模型部署邊緣設(shè)備的奇妙之旅:如何在邊緣端部署OpenCV

    力的研究工具。在深度學(xué)習(xí)中,我們會(huì)經(jīng)常接觸到兩個(gè)名稱,圖像處理和計(jì)算機(jī)視覺(jué),它們之間有什么區(qū)別呢?圖像處理(ImageProcessing)目的:圖像處理主要集中在
    的頭像 發(fā)表于 12-14 09:10 ?230次閱讀
    AI模型部署<b class='flag-5'>邊緣</b>設(shè)備的奇妙之旅:如<b class='flag-5'>何在</b><b class='flag-5'>邊緣</b>端部署<b class='flag-5'>OpenCV</b>

    如何用OpenCV的相機(jī)捕捉視頻進(jìn)行人臉檢測(cè)--基于米爾NXP i.MX93開(kāi)發(fā)板

    的是Haar特征人臉檢測(cè),此外OpenCV中還集成了深度學(xué)習(xí)方法來(lái)實(shí)現(xiàn)人臉檢測(cè)。 【參考資料】 使用O
    發(fā)表于 11-15 17:58

    何在智能手機(jī)系統(tǒng)中使用bq27505

    電子發(fā)燒友網(wǎng)站提供《如何在智能手機(jī)系統(tǒng)中使用bq27505.pdf》資料免費(fèi)下載
    發(fā)表于 10-17 10:21 ?0次下載
    如<b class='flag-5'>何在</b>智能手機(jī)系統(tǒng)<b class='flag-5'>中使</b>用bq27505

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    ,共同進(jìn)步。 歡迎加入FPGA技術(shù)微信交流群14群! 交流問(wèn)題(一) Q:FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?現(xiàn)在用FPGA做深度學(xué)習(xí)加速成為一個(gè)熱門(mén),深鑒科技,商湯,曠視科技等都有基于FPG
    發(fā)表于 09-27 20:53

    何在汽車CAN應(yīng)用中使用負(fù)邊緣觸發(fā)觸發(fā)器節(jié)省電力

    電子發(fā)燒友網(wǎng)站提供《如何在汽車CAN應(yīng)用中使用負(fù)邊緣觸發(fā)觸發(fā)器節(jié)省電力.pdf》資料免費(fèi)下載
    發(fā)表于 09-13 10:06 ?0次下載
    如<b class='flag-5'>何在</b>汽車CAN應(yīng)用<b class='flag-5'>中使</b>用負(fù)<b class='flag-5'>邊緣</b>觸發(fā)觸發(fā)器節(jié)省電力

    opencv圖像識(shí)別有什么算法

    OpenCV(Open Source Computer Vision Library)是一個(gè)開(kāi)源的計(jì)算機(jī)視覺(jué)和機(jī)器學(xué)習(xí)軟件庫(kù),提供了大量的圖像處理和計(jì)算機(jī)視覺(jué)相關(guān)的算法。以下是一些常見(jiàn)的OpenCV
    的頭像 發(fā)表于 07-16 10:40 ?1072次閱讀

    opencv的主要功能有哪些

    OpenCV提供了豐富的圖像處理功能,包括圖像的讀取、顯示、保存、轉(zhuǎn)換等。此外,OpenCV還支持圖像的濾波、邊緣檢測(cè)、形態(tài)學(xué)操作、圖像金字塔等高級(jí)圖像處理技術(shù)。 特征
    的頭像 發(fā)表于 07-16 10:35 ?1581次閱讀

    基于AI深度學(xué)習(xí)的缺陷檢測(cè)系統(tǒng)

    在工業(yè)生產(chǎn)中,缺陷檢測(cè)是確保產(chǎn)品質(zhì)量的關(guān)鍵環(huán)節(jié)。傳統(tǒng)的人工檢測(cè)方法不僅效率低下,且易受人為因素影響,導(dǎo)致誤檢和漏檢問(wèn)題頻發(fā)。隨著人工智能技術(shù)的飛速發(fā)展,特別是深度學(xué)習(xí)技術(shù)的崛起,基于A
    的頭像 發(fā)表于 07-08 10:30 ?1465次閱讀

    基于深度學(xué)習(xí)的小目標(biāo)檢測(cè)

    在計(jì)算機(jī)視覺(jué)領(lǐng)域,目標(biāo)檢測(cè)一直是研究的熱點(diǎn)和難點(diǎn)之一。特別是在小目標(biāo)檢測(cè)方面,由于小目標(biāo)在圖像中所占比例小、特征不明顯,使得檢測(cè)難度顯著增加。隨著深度
    的頭像 發(fā)表于 07-04 17:25 ?911次閱讀

    嵌入式學(xué)習(xí)-飛凌ElfBoard ELF 1板卡 - 如何在Ubuntu中編譯OpenCV庫(kù)

    使用X86架構(gòu)的OpenCV庫(kù),利用主機(jī)的強(qiáng)大計(jì)算性能和豐富的調(diào)試工具,可以加速開(kāi)發(fā)進(jìn)程并簡(jiǎn)化調(diào)試環(huán)節(jié)。下面就跟小伙伴詳細(xì)講述如何在Ubuntu環(huán)境下將 OpenCV 編譯為 X86 架構(gòu)。 開(kāi)發(fā)環(huán)境
    發(fā)表于 06-07 09:21

    ELF 1技術(shù)貼|如何在Ubuntu中編譯OpenCV庫(kù)

    OpenCV庫(kù),利用主機(jī)的強(qiáng)大計(jì)算性能和豐富的調(diào)試工具,可以加速開(kāi)發(fā)進(jìn)程并簡(jiǎn)化調(diào)試環(huán)節(jié)。下面就跟小伙伴詳細(xì)講述如何在Ubuntu環(huán)境下將OpenCV編譯為X86
    的頭像 發(fā)表于 05-31 16:41 ?1174次閱讀
    ELF 1技術(shù)貼|如<b class='flag-5'>何在</b>Ubuntu中編譯<b class='flag-5'>OpenCV</b>庫(kù)

    深度學(xué)習(xí)檢測(cè)小目標(biāo)常用方法

    深度學(xué)習(xí)的效果在某種意義上是靠大量數(shù)據(jù)喂出來(lái)的,小目標(biāo)檢測(cè)的性能同樣也可以通過(guò)增加訓(xùn)練集中小目標(biāo)樣本的種類和數(shù)量來(lái)提升。
    發(fā)表于 03-18 09:57 ?729次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>檢測(cè)</b>小目標(biāo)常用方法

    何在測(cè)試中使用ChatGPT

    Dimitar Panayotov 在 2023 年 QA Challenge Accepted 大會(huì) 上分享了他如何在測(cè)試中使用 ChatGPT。
    的頭像 發(fā)表于 02-20 13:57 ?766次閱讀
    主站蜘蛛池模板: 色戒床震视频片段| V8成品人视频| 曰批视频免费40分钟不要钱| 中文字幕不卡在线高清| 99热国产这里只有精品9九| 国产 高清 无码 中文| 婚后被调教当众高潮H喷水| 免费在线a| 我年轻漂亮的继坶2中字在线播放| 亚洲一区日韩一区欧美一区a| av网站视频在线观看| 國產日韓亞洲精品AV| 欧洲最大无人区免费高清完整版 | 国产盗摄TP摄像头偷窥| 久久久久综合一本久道| 肉欲横流(NP高H)| 在线看片av以及毛片| 国产精品99久久久久久WWW| 玖玖爱在线播放| 我要色导航| 99视频在线看观免费| 果冻传媒在线播放 免费观看| 欧美性xxx免费看片| 亚洲欲色欲色XXXXX在线AV| 成人影片下载网站| 久久婷婷丁香五月色综合啪免费| 色婷婷国产麻豆AV| 18禁黄无遮挡禁游戏在线下载| 求个av网站| 亚洲色欲H网在线观看| 动漫成年美女黄漫网站| 久拍国产在线观看| 香蕉免费高清完整| xxx成熟xxx| 旧里番6080在线观看| 亚洲国产剧情中文视频在线| 芭乐视频网页版在线观看 | 光棍天堂在线a| 免费看片A级毛片免费看| 亚洲精品久久久久久蜜臀 | vidosgratis tv少女|