邊緣是指圖像局部亮度變化最顯著的部分。邊緣主要存在于目標與目標、目標與背景、區域與區域之間,是圖像分割、紋理特征提取及形狀特征提取和圖像分析的基礎。邊緣檢測是機器視覺中必不可少的環節,是一種重要的圖像預處理技術。圖像分析和理解的第一步常常是邊緣檢測,它在圖像處理與計算機視覺中占有特殊位置,它是底層處理中最重要的環節之一,往往檢測出邊緣的圖象就可以進行特征提取和形狀分析。
邊緣的形成是由于物體的材料不同或表面的朝向不同,引起圖像中的邊緣處存在明暗、色彩、紋理的變化。因此反過來在圖像中檢查不同灰度、色彩等特性區域的交界處就可得到邊緣。邊緣輪廓是人類識別物體形狀的重要因素,也是圖像處理中重要的處理對象。邊緣檢測主要采用各種算法來發現、強化圖像中那些可能存在邊緣的像素點。
由于邊緣是灰度值不連續的結果,這種不連續常可以利用求導數方便的檢測到,一般選擇一階和二階導數來檢測邊緣。在機器視覺檢測中,邊緣檢測可以借助空域微分算子通過卷積完成。實際上數字圖像處理中求導數是利用差分近似微分來進行的。常用的微分算子有梯度算子和拉普拉斯算子。
邊緣檢測算法的基本步驟如下:
1、濾波:邊緣檢測算法主要是基于圖象強度的一階和二階導數,但導數的計算對噪聲很敏感,因此必須使用濾波器來改善與噪聲有關的邊緣檢測器的性能。
2、增強:增強邊緣的基礎是確定圖象各點鄰域強度的變化值。增強算法可以將鄰域(或局部)強度值有顯著變化的點突顯出來。
3、檢測:在圖象中有許多點的梯度幅值比較大,而這些點在特定的應用領域中并不都是邊緣,所以應該用某種方法來確定哪些點是邊緣點。常采用梯度幅值Ill值判據。
4、定位:如果某一應用場合要求確定邊緣位置,則邊緣的位置可在子象素分辨率上來估計,邊緣的方位也可以被估計出來。
在用機器視覺進行尺寸測量時,這四步必不可少,尤其必須指出邊緣的精確位置和方位。機器視覺檢測技術,以其強大的性能優勢,使得產品質量標準化,檢測速度快,檢測結果可靠、穩定,并且可以長時間檢測,廣泛應用于各大領域。
編輯:jq
-
圖像
+關注
關注
2文章
1084瀏覽量
40455 -
機器視覺
+關注
關注
161文章
4369瀏覽量
120294
原文標題:機器視覺定位技術之產品邊緣輪廓檢測
文章出處:【微信號:jiqishijue2020,微信公眾號:機器視覺自動化】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論