色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

攝像頭傳統(tǒng)視覺算法與深度學(xué)習(xí)算法區(qū)別

電子工程師 ? 來源:四維圖新NavInfo ? 作者:四維圖新NavInfo ? 2021-05-27 17:00 ? 次閱讀

引言

攝像頭傳統(tǒng)視覺技術(shù)在算法上相對容易實(shí)現(xiàn),因此已被現(xiàn)有大部分車廠用于輔助駕駛功能。但是隨著自動駕駛技術(shù)的發(fā)展,基于深度學(xué)習(xí)的算法開始興起,本期小編就來說說深度視覺算法相關(guān)技術(shù)方面的資料,讓我們一起來學(xué)習(xí)一下吧。

01深度學(xué)習(xí)概述

深度學(xué)習(xí)(DL,Deep Learning)是一類模式分析方法的統(tǒng)稱,屬于機(jī)器學(xué)習(xí)(ML,MachineLearning)領(lǐng)域中一個新的研究方向。深度學(xué)習(xí)通過學(xué)習(xí)樣本數(shù)據(jù)的內(nèi)在規(guī)律和表示層次,能夠讓機(jī)器像人一樣具有分析、學(xué)習(xí)能力,可識別文字、圖像和聲音等數(shù)據(jù),從而實(shí)現(xiàn)人工智能AI,Artificial Intelligence)。

02深度學(xué)習(xí)意義

很多小伙伴們可能了解汽車想要實(shí)現(xiàn)自動駕駛,感知、決策與控制這三大系統(tǒng)是缺一不可的。其中,感知被我們放在了首位,因?yàn)檐囕v首先需要實(shí)時了解自車與現(xiàn)實(shí)世界三維變化的關(guān)系,即精準(zhǔn)了解自車與周圍人、車、障礙物及道路要素等位置關(guān)系和變化。深度學(xué)習(xí)算法有效提升了攝像頭、激光雷達(dá)等傳感器的“智能”水平,這很大程度上也決定了自動駕駛汽車在復(fù)雜路況上的可靠度,因此深度學(xué)習(xí)的應(yīng)用便成為了關(guān)鍵所在。另外汽車的感知傳感器雖然有多種,但是攝像頭是唯一一個通過圖像可以感知現(xiàn)實(shí)世界的傳感器,通過深度學(xué)習(xí)可以快速提升圖像的識別能力,讓我們的行駛更加安全。

03攝像頭傳統(tǒng)視覺算法與深度學(xué)習(xí)算法區(qū)別

有看過小編上期寫的關(guān)于攝像頭傳統(tǒng)視覺算法的小伙伴們就要問了,既然傳統(tǒng)攝像頭視覺算法已經(jīng)可以使用,為什么還要研究深度學(xué)習(xí)算法呢?

因?yàn)閭鹘y(tǒng)視覺算法有著自身的一些瓶頸,無論單目攝像頭還是多目攝像頭,傳統(tǒng)視覺算法都是基于人為特征提取得到樣本特征庫去識別計(jì)算。當(dāng)自動駕駛車輛行駛過程中如發(fā)現(xiàn)特征庫沒有該樣本或特征庫樣本不準(zhǔn)確,都會導(dǎo)致傳統(tǒng)視覺算法無法識別,另外傳統(tǒng)視覺算法還有在復(fù)雜場景下分割不佳等情況。因此,基于人為特征提取的傳統(tǒng)視覺算法具有性能瓶頸,無法完全滿足自動駕駛的目標(biāo)檢測。

而攝像頭深度學(xué)習(xí)視覺算法的特征提取優(yōu)勢是基于神經(jīng)網(wǎng)絡(luò)算法,它模擬人的神經(jīng)網(wǎng)絡(luò),可將自動駕駛上攝像頭輸入的圖像(甚至激光雷達(dá)的點(diǎn)云)等信息進(jìn)行語義分割,有效解決了傳統(tǒng)視覺算法對復(fù)雜的實(shí)際場景分割或樣本特征庫不佳的情況,讓圖像分類、語義分割、目標(biāo)檢測和同步定位與地圖構(gòu)建(SLAM)等任務(wù)上獲得更高的準(zhǔn)確度。

接下來為了便于大家理解,小編先講講深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)是什么?它是如何幫助攝像頭完成圖像識別等視覺計(jì)算的。它比傳統(tǒng)攝像頭的視覺算法又好在哪里?

04深度學(xué)習(xí)之神經(jīng)網(wǎng)絡(luò)

深度學(xué)習(xí)大家看字面就很容易發(fā)現(xiàn)它是由“深度”+“學(xué)習(xí)”來完成的?!吧疃取本褪悄7麓竽X的神經(jīng)元之間傳遞處理信息的模式,其模型結(jié)構(gòu)包括輸入層(inputlayer),隱藏層(Hiddenlayer)和輸出層(outputlayer),其中輸入層和輸出層一般只有1層,而隱藏層(或中間層)它往往有5層、6層,甚至更多層,多層隱層(中間層)節(jié)點(diǎn)被稱為深度學(xué)習(xí)里的“深度”;“學(xué)習(xí)”就是進(jìn)行“特征學(xué)習(xí)”(featurelearning)或“表示學(xué)習(xí)”(representationlearning),也就是說,通過逐層特征變換,將樣本在原空間的特征表示變換到一個新特征空間,利用大數(shù)據(jù)來學(xué)習(xí)和調(diào)優(yōu),建立起適量的神經(jīng)元計(jì)算節(jié)點(diǎn)和多層運(yùn)算層次結(jié)構(gòu),盡可能的逼近現(xiàn)實(shí)的關(guān)聯(lián)關(guān)系,從而使特征分類或預(yù)測更容易。

上面的內(nèi)容太抽象了,簡單來講神經(jīng)網(wǎng)絡(luò)有三層:

輸入:輸入層每個神經(jīng)元對應(yīng)一個變量特征,輸入層的神經(jīng)元相當(dāng)于裝有數(shù)字的容器

輸出:輸出層,回歸問題為一個神經(jīng)元,分類問題為多個神經(jīng)元

參數(shù)網(wǎng)絡(luò)中所有的參數(shù),即中間層(或隱藏層)神經(jīng)元的權(quán)重和偏置,每一個神經(jīng)元代表該層神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)到的特征

這里大家只需要記住神經(jīng)網(wǎng)絡(luò)不管規(guī)模的大小,都是由一個一個單神經(jīng)元網(wǎng)絡(luò)堆疊起來的。

不好理解也沒有關(guān)系,下面小編舉個例子來說明一下吧。

假設(shè)我們要買房子,那么買房子我們所能承受的最終成交價格就是輸出層;

輸入層可能會有很多原始特征(即購房因素,如房屋面積,房間個數(shù),附近學(xué)校個數(shù),學(xué)校教育質(zhì)量,公共交通,停車位);

中間層(或隱藏層)的神經(jīng)元就是我們可以學(xué)習(xí)到的特征,如家庭人數(shù),教育質(zhì)量,出行

164730be-be44-11eb-9e57-12bb97331649.png

我們搜集的輸入特征數(shù)據(jù)越多,就能得到一個更為精細(xì)的神經(jīng)網(wǎng)絡(luò)。而且隨著輸入層的原始特征神經(jīng)元個數(shù)的增多,中間層就能從原始特征中學(xué)到足夠多的、更為細(xì)致的不同含義組合特征,比如房屋面積和房間數(shù)量能表示容納家庭人數(shù),學(xué)校數(shù)量和學(xué)校質(zhì)量表示教育質(zhì)量。通過每個神經(jīng)元對應(yīng)的特征分類、統(tǒng)計(jì)和計(jì)算,最終得到我們想要輸出層“房價”。

那么對于攝像頭的深度學(xué)習(xí)來說,輸入層為攝像頭獲取的圖像,圖像對于攝像頭深度學(xué)習(xí)算法來說可以看成是一堆數(shù)據(jù)流,那么這些數(shù)據(jù)流還可以分成更多原始特征,如圖像各像素點(diǎn)的稀疏和密集、語義和幾何信息,還包括顏色、明暗、灰度等;中間層將這些輸入層的原始特征信息分類計(jì)算后,可識別出圖像中包含的物體有哪些(如車道線、障礙物、人、車、紅綠燈等),最終輸出與自動駕駛車有關(guān)的物體的實(shí)時距離、大小、形狀、紅綠燈顏色等要素,幫助自動駕駛車輛完成實(shí)時感知周圍環(huán)境識別、測距等功能。

以上我們可以看出,基于神經(jīng)網(wǎng)絡(luò)的攝像頭視覺深度學(xué)習(xí)算法比基于人為特征提取的傳統(tǒng)攝像頭視覺算法要好用的多。因此目前主流的攝像頭視覺算法,都會使用深度學(xué)習(xí)去解決自動駕駛車對于圖像分類、圖像分割,對象檢測、多目標(biāo)跟蹤、語義分割、可行駛區(qū)域、目標(biāo)檢測和同步定位與地圖構(gòu)建(SLAM)、場景分析等任務(wù)的準(zhǔn)確率、識別率及圖像處理速度等,深度學(xué)習(xí)視覺算法也讓自動駕駛車快速量產(chǎn)落地成為可能。

05攝像頭深度學(xué)習(xí)算法

自動駕駛攝像頭傳感器所使用的深度學(xué)習(xí)視覺算法常用的有以下三種:

(1)基于卷積運(yùn)算的神經(jīng)網(wǎng)絡(luò)系統(tǒng),即卷積神經(jīng)網(wǎng)絡(luò)(CNN,ConvolutionalNeural Network)。在圖像識別中應(yīng)用廣泛。

(2)基于多層神經(jīng)元的自編碼神經(jīng)網(wǎng)絡(luò),包括自編碼(Autoencoder)以及近年來受到廣泛關(guān)注的稀疏編碼(SparseCoding)。

(3)以多層自編碼神經(jīng)網(wǎng)絡(luò)的方式進(jìn)行預(yù)訓(xùn)練,進(jìn)而結(jié)合鑒別信息進(jìn)一步優(yōu)化神經(jīng)網(wǎng)絡(luò)權(quán)值的深度置信網(wǎng)絡(luò)(DBN,DeepBelief Networks)。

06深度學(xué)習(xí)是一個黑箱

雖然講了這么多,究竟基于神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)算法是如何獲得輸入輸出的,其實(shí)上面的案例和算法分類也只是幫助我們?nèi)ズ唵卫斫馍疃葘W(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),事實(shí)上深度學(xué)習(xí)是一個“黑箱”。“黑箱”意味著深度學(xué)習(xí)的中間過程不可知,深度學(xué)習(xí)產(chǎn)生的結(jié)果不可控。實(shí)際上程序員編程后的神經(jīng)網(wǎng)絡(luò)到底是如何學(xué)習(xí),程序員們也不知道,只知道最終輸出結(jié)果是利用“萬能近似定理”(Universal approximation theorem)盡可能準(zhǔn)確的擬合出輸入數(shù)據(jù)和輸出結(jié)果間的關(guān)系。所以,很多時候深度學(xué)習(xí)能很好的完成學(xué)習(xí)識別等任務(wù),可是我們并不知道它學(xué)習(xí)到了什么,也不知道它為什么做出了特定的選擇。知其然而不知其所以然,這可以看作是深度學(xué)習(xí)的常態(tài),也是深度學(xué)習(xí)工作中的一大挑戰(zhàn)。盡管如此,深度學(xué)習(xí)還是很好用滴!

當(dāng)然,深度學(xué)習(xí)算法不僅僅可以用于自動駕駛攝像頭方面的視覺感知,還可以用于語音識別、交通、醫(yī)療、生物信息等領(lǐng)域。

這里順帶說一句,作為四維圖新而言,攝像頭不僅是四維圖新自動駕駛解決方案里的重要傳感器,也是四維圖新高精度地圖采集的主要工具。而且在高精度地圖采集和制圖標(biāo)注過程中,不僅為四維圖新自動駕駛深度學(xué)習(xí)提供了海量的標(biāo)注數(shù)據(jù),還建立了四維圖新自動駕駛各類場景仿真庫,讓四維圖新基于深度學(xué)習(xí)的自動駕駛算法獲得的結(jié)果更為準(zhǔn)確、高效。

四維圖新通過高精度地圖采集車上搭載的高清攝像頭、激光雷達(dá)等傳感器,將采集到的數(shù)據(jù)加以處理,并通過高度的自動化平臺進(jìn)行繪制,從而為自動駕駛車感知、定位、規(guī)劃、決策等模塊提供重要支持。

目前四維圖新高精度地圖已經(jīng)覆蓋國內(nèi)32萬+公里高速公路以及10000+公里城市道路。

在自動駕駛仿真方面,依托大規(guī)模數(shù)據(jù)資源,形成參數(shù)化的場景模板,并具備靜態(tài)場景生成與動態(tài)場景制作的場景庫構(gòu)建能力,為自動駕駛提供完備的仿真云平臺能力和商用分析平臺能力。

結(jié)語:

相信通過這幾期的車載攝像頭以及相應(yīng)視覺算法的介紹,讓大家對攝像頭視覺傳感器有了一定的了解。眾所周知,攝像頭雖然可以實(shí)現(xiàn)很多功能,但是在逆光、光線昏暗和攝像頭遮擋等某些特定環(huán)境下,攝像頭的使用效果也會大打折扣,因此我們需要汽車其他傳感器的冗余及各傳感器數(shù)據(jù)融合計(jì)算來保障我們的自動駕駛車更加安全。而我們四維圖新一直在致力于成為更值得客戶信賴的智能出行科技公司,也希望我們的自動駕駛相關(guān)產(chǎn)品為小伙伴們帶來更加安全、放心、舒心的自動駕駛體驗(yàn)。

那么下期,小編繼續(xù)為大家整理其他傳感器相關(guān)方面的資料,讓大家對自動駕駛更為了解,敬請期待吧!

原文標(biāo)題:新·知丨自動駕駛傳感器那點(diǎn)事 之 攝像頭深度學(xué)習(xí)視覺技術(shù)

文章出處:【微信公眾號:四維圖新NavInfo】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 攝像頭
    +關(guān)注

    關(guān)注

    59

    文章

    4836

    瀏覽量

    95599
  • 自動駕駛
    +關(guān)注

    關(guān)注

    784

    文章

    13784

    瀏覽量

    166394
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5500

    瀏覽量

    121113

原文標(biāo)題:新·知丨自動駕駛傳感器那點(diǎn)事 之 攝像頭深度學(xué)習(xí)視覺技術(shù)

文章出處:【微信號:realnavinfo,微信公眾號:四維圖新NavInfo】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    安防監(jiān)控攝像頭氣密性測試案例-連拓精密#攝像頭氣密檢測設(shè)備

    攝像頭
    連拓精密科技
    發(fā)布于 :2024年12月11日 15:00:21

    多光譜火焰檢測攝像頭

    隨著工業(yè)化進(jìn)程的加快,火災(zāi)安全問題日益受到重視。傳統(tǒng)的火焰檢測技術(shù)主要依賴于溫度傳感器和煙霧探測器,但這些方法在某些情況下存在響應(yīng)慢、誤報率高等缺陷。為了解決這些問題,多光譜火焰檢測攝像頭應(yīng)運(yùn)而生
    的頭像 發(fā)表于 12-11 10:50 ?115次閱讀
    多光譜火焰檢測<b class='flag-5'>攝像頭</b>

    用于環(huán)視和CMS攝像頭系統(tǒng)的四通道攝像頭應(yīng)用程序

    電子發(fā)燒友網(wǎng)站提供《用于環(huán)視和CMS攝像頭系統(tǒng)的四通道攝像頭應(yīng)用程序.pdf》資料免費(fèi)下載
    發(fā)表于 10-11 10:02 ?0次下載
    用于環(huán)視和CMS<b class='flag-5'>攝像頭</b>系統(tǒng)的四通道<b class='flag-5'>攝像頭</b>應(yīng)用程序

    深度學(xué)習(xí)算法在嵌入式平臺上的部署

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)算法在各個領(lǐng)域的應(yīng)用日益廣泛。然而,將深度學(xué)習(xí)算法部署到資源
    的頭像 發(fā)表于 07-15 10:03 ?1331次閱讀

    深度學(xué)習(xí)的基本原理與核心算法

    隨著大數(shù)據(jù)時代的到來,傳統(tǒng)機(jī)器學(xué)習(xí)方法在處理復(fù)雜模式上的局限性日益凸顯。深度學(xué)習(xí)(Deep Learning)作為一種新興的人工智能技術(shù),以其強(qiáng)大的非線性表達(dá)能力和自
    的頭像 發(fā)表于 07-04 11:44 ?1978次閱讀

    基于FPGA的攝像頭心率檢測裝置設(shè)計(jì)

    時間很長,且對環(huán)境要求較為嚴(yán)格。 基此,我們對其算法進(jìn)行優(yōu)化,設(shè)計(jì)出更快運(yùn)算速度, 可在更復(fù)雜環(huán)境較準(zhǔn)確測心率的攝像頭心率檢測裝置。本系統(tǒng)著眼機(jī)器視覺,是集合圖像處理技術(shù)、HDMI 顯示技術(shù)的智能
    發(fā)表于 07-01 17:58

    智能攝像頭抄表器是什么?

    1.概念理解:智能攝像頭抄表器智能攝像頭抄表器是一種融合了人工智能和物聯(lián)網(wǎng)技術(shù)的創(chuàng)新設(shè)備,主要用于自動讀取和記錄各種計(jì)量儀表的數(shù)據(jù),如水表、電表、燃?xì)獗淼?。它通過高清攝像頭捕捉圖像,然后利用AI
    的頭像 發(fā)表于 04-24 14:14 ?600次閱讀
    智能<b class='flag-5'>攝像頭</b>抄表器是什么?

    深度解析深度學(xué)習(xí)下的語義SLAM

    隨著深度學(xué)習(xí)技術(shù)的興起,計(jì)算機(jī)視覺的許多傳統(tǒng)領(lǐng)域都取得了突破性進(jìn)展,例如目標(biāo)的檢測、識別和分類等領(lǐng)域。近年來,研究人員開始在視覺SLAM
    發(fā)表于 04-23 17:18 ?1285次閱讀
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>下的語義SLAM

    機(jī)器視覺網(wǎng)卡:連接攝像頭和計(jì)算設(shè)備之間的橋梁

    機(jī)器視覺是一門涉及計(jì)算機(jī)科學(xué)和人工智能的領(lǐng)域,它致力于讓計(jì)算機(jī)系統(tǒng)具備類似于人類視覺的能力。通過使用攝像頭和圖像處理算法,機(jī)器視覺系統(tǒng)可以感
    的頭像 發(fā)表于 03-25 17:59 ?896次閱讀
    機(jī)器<b class='flag-5'>視覺</b>網(wǎng)卡:連接<b class='flag-5'>攝像頭</b>和計(jì)算設(shè)備之間的橋梁

    探討車載攝像頭ESD問題的成因及解決策略

    車載攝像頭整體結(jié)構(gòu)主要由前蓋(鏡頭)、后蓋(接口)和硬件(電路)三大部分組成。其中,內(nèi)部電路是攝像頭的核心部分,不同協(xié)議的攝像頭電路略有區(qū)別
    發(fā)表于 02-27 14:26 ?1715次閱讀

    在ELF 1 開發(fā)板上實(shí)現(xiàn)讀取攝像頭視頻進(jìn)行目標(biāo)檢測

    深度學(xué)習(xí)模型的項(xiàng)目,該項(xiàng)目能夠?qū)崟r讀取攝像頭視頻流并實(shí)現(xiàn)對畫面中的物體進(jìn)行精準(zhǔn)的目標(biāo)檢測。項(xiàng)目所需的硬件設(shè)備:1、基于NXP(恩智浦)i.MX6ULL的ELF1開
    的頭像 發(fā)表于 01-24 10:38 ?686次閱讀
    在ELF 1 開發(fā)板上實(shí)現(xiàn)讀取<b class='flag-5'>攝像頭</b>視頻進(jìn)行目標(biāo)檢測

    AHD攝像頭與CVBS的區(qū)別

    隨著科技的不斷進(jìn)步,攝像頭作為監(jiān)控領(lǐng)域中重要的設(shè)備之一,也在不斷演化和改進(jìn)。AHD(Analog High Definition,模擬高清)攝像頭是近年來相對較新的一種技術(shù),相對于傳統(tǒng)的CVBS
    的頭像 發(fā)表于 01-04 11:08 ?1.4w次閱讀

    目前主流的深度學(xué)習(xí)算法模型和應(yīng)用案例

    深度學(xué)習(xí)在科學(xué)計(jì)算中獲得了廣泛的普及,其算法被廣泛用于解決復(fù)雜問題的行業(yè)。所有深度學(xué)習(xí)算法都使用
    的頭像 發(fā)表于 01-03 10:28 ?1927次閱讀
    目前主流的<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>模型和應(yīng)用案例
    主站蜘蛛池模板: ZZoo兽2皇| 国产亚洲精品AAAAAAA片| 久草在线在线精品观看99| 日韩无码在线| 0855福利| 户外插BBBBB| 少妇内射兰兰久久| 99热久久视频只有精品6| 久草色香蕉视频在线| 无码内射成人免费喷射| JIZZ学生13| 久久资源365| 亚洲免费片| 国产精品久久久久久久久齐齐| 免费精品国偷自产在线在线| 野花日本高清在线观看免费吗| 国产精品亚洲在钱视频 | 日本污ww视频网站| 2020精品极品国产色在线| 精品粉嫩BBWBBZBBW| 小SAO货水真多把你CAO烂| 高清欧美一区二区三区| 中文字幕在线视频免费观看| 做暖免费观看日本| 精品欧美一区二区三区四区| 先锋资源久久| 中国大陆一级毛片免费| 国产AV果冻传奇麻豆| 亚洲乱色视频在线观看 | 日本边添边摸边做边爱边| 午夜在线播放免费人成无| 永久免费毛片| 国产精品亚洲精品久久国语| 年轻的搜子8中字在线观看| 亚洲视频一区在线| 神马午夜不卡片| 成 人 网 站毛片| 日本阿v在线资源无码免费| yellow在线观看免费高清的日本 | 亚洲爆乳少妇精品无码专区| 国产精品69人妻无码久久|