簡單來說,IGBT相當于一個由MOSFET驅動的厚基區PNP型晶體管,它的簡化等效電路如圖(b)所示,圖中的RN為PNP晶體管基區內的調制電阻。從該等效電路可以清楚地看出,IGBT是用晶體管和MOSFET組成的達林頓結構的復合器件。岡為圖中的晶體管為PNP型晶體管,MOSFET為N溝道場效應晶體管,所以這種結構的IGBT稱為N溝道IIGBT,其符號為N-IGBT。類似地還有P溝道IGBT,即P- IGBT。
圖(b)
IGBT是—種場控器件,它的開通和關斷由柵極和發射極間電壓UGE決定,當柵射電壓UCE為正且大于開啟電壓UCE(th)時,MOSFET內形成溝道并為PNP型晶體管提供基極電流進而使IGBT導通,此時,從P+區注入N-的空穴(少數載流子)對N-區進行電導調制,減小N-區的電阻RN,使高耐壓的IGBT也具有很小的通態壓降。當柵射極間不加信號或加反向電壓時,MOSFET內的溝道消失,PNP型晶體管的基極電流被切斷,IGBT即關斷。由此可知,IGBT的驅動原理與MOSFET基本相同。
①當UCE為負時:J3結處于反偏狀態,器件呈反向阻斷狀態。
②當uCE為正時:UC< UTH,溝道不能形成,器件呈正向阻斷狀態;UG>UTH,絕緣門極下形成N溝道,由于載流子的相互作用,在N-區產生電導調制,使器件正向導通。
1)導通
IGBT硅片的結構與功率MOSFET的結構十分相似,主要差異是JGBT增加了P+基片和一個N+緩沖層(NPT-非穿通-IGBT技術沒有增加這個部分),其中一個MOSFET驅動兩個雙極器件(有兩個極性的器件)。基片的應用在管體的P、和N+區之間創建了一個J,結。當正柵偏壓使柵極下面反演P基區時,一個N溝道便形成,同時出現一個電子流,并完全按照功率MOSFET的方式產生一股電流。如果這個電子流產生的電壓在0.7V范圍內,則J1將處于正向偏壓,一些空穴注入N-區內,并調整N-與N+之間的電阻率,這種方式降低了功率導通的總損耗,并啟動了第二個電荷流。最后的結果是在半導體層次內臨時出現兩種不同的電流拓撲:一個電子流(MOSFET電流);一個空穴電流(雙極)。當UCE大于開啟電壓UCE(th),MOSFET內形成溝道,為晶體管提供基極電流,IGBT導通。
2)導通壓降
電導調制效應使電阻RN減小,通態壓降小。所謂通態壓降,是指IGBT進入導通狀態的管壓降UDS,這個電壓隨UCS上升而下降。
3)關斷
當在柵極施加一個負偏壓或柵壓低于門限值時,溝道被禁止,沒有空穴注入N-區內。在任何情況下,如果MOSFET的電流在開關階段迅速下降,集電極電流則逐漸降低,這是閡為換向開始后,在N層內還存在少數的載流子(少于)。這種殘余電流值(尾流)的降低,完全取決于關斷時電荷的密度,而密度又與幾種因素有關,如摻雜質的數量和拓撲,層次厚度和溫度。少子的衰減使集電極電流具有特征尾流波形。集電極電流將引起功耗升高、交叉導通問題,特別是在使用續流二極管的設備上,問題更加明顯。
鑒于尾流與少子的重組有關,尾流的電流值應與芯片的Tc、IC:和uCE密切相關,并且與空穴移動性有密切的關系。因此,根據所達到的溫度,降低這種作用在終端設備設計上的電流的不理想效應是可行的。當柵極和發射極間施加反壓或不加信號時,MOSFET內的溝道消失,晶體管的基極電流被切斷,IGBT關斷。
4)反向阻斷
當集電極被施加一個反向電壓時,J,就會受到反向偏壓控制,耗盡層則會向N-區擴展。因過多地降低這個層面的厚度,將無法取得一個有效的阻斷能力,所以這個機制十分重要。另外,如果過大地增加這個區域的尺寸,就會連續地提高壓降。
5)正向阻斷
當柵極和發射極短接并在集電極端子施加一個正電壓時,J,結受反向電壓控制。此時,仍然是由N漂移區巾的耗盡層承受外部施加的電壓。
6)閂鎖
ICBT在集電極與發射極之間有—個寄生PNPN晶閘管。在特殊條件下,這種寄生器件會導通。這種現象會使集電極與發射極之間的電流量增加,對等效MOSFET的控制能力降低,通常還會引起器件擊穿問題。晶閘管導通現象被稱為IGBT閂鎖。具體來說,產生這種缺陷的原因各不相同,但與器件的狀態有密切關系。
文章來源:kiaic
編輯:ymf
-
MOSFET
+關注
關注
147文章
7198瀏覽量
213614 -
IGBT
+關注
關注
1267文章
3804瀏覽量
249315 -
pnp
+關注
關注
11文章
297瀏覽量
51833
發布評論請先 登錄
相關推薦
評論