色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于電池充電器應(yīng)用的反向電壓保護(hù)電路

analog_devices ? 來源:亞德諾半導(dǎo)體 ? 作者:亞德諾半導(dǎo)體 ? 2022-03-29 09:50 ? 次閱讀

處理電源電壓反轉(zhuǎn)有幾種眾所周知的方法。最明顯的方法是在電源和負(fù)載之間連接一個二極管,但是由于二極管正向電壓的原因,這種做法會產(chǎn)生額外的功耗。雖然該方法很簡潔,但是二極管在便攜式或備份應(yīng)用中是不起作用的,因為電池在充電時必須吸收電流,而在不充電時則須供應(yīng)電流。

另一種方法是使用圖 1 所示的 MOSFET 電路之一。

基于電池充電器應(yīng)用的反向電壓保護(hù)電路

圖 1:傳統(tǒng)的負(fù)載側(cè)反向保護(hù)

對于負(fù)載側(cè)電路而言,這種方法比使用二極管更好,因為電源 (電池) 電壓增強了 MOSFET,因而產(chǎn)生了更少的壓降和實質(zhì)上更高的電導(dǎo)。該電路的 NMOS 版本比 PMOS 版本更好,因為分立式 NMOS 晶體管導(dǎo)電率更高、成本更低且可用性更好。在這兩種電路中,MOSFET 都是在電池電壓為正時導(dǎo)通,電池電壓反轉(zhuǎn)時則斷開連接。MOSFET 的物理“漏極”變成了電源,因為它在 PMOS 版本中是較高的電位,而在 NMOS 版本中則是較低的電位。由于 MOSFET 在三極管區(qū)域中是電對稱的,因此它們在兩個方向上都能很好地傳導(dǎo)電流。采用此方法時,晶體管必須具有高于電池電壓的最大 VGS 和 VDS 額定值。

遺憾的是,這種方法僅對負(fù)載側(cè)電路有效,無法配合能夠給電池充電的電路工作。電池充電器將產(chǎn)生電源,重新啟用 MOSFET 并重新建立至反向電池的連接。圖 2 展示了采用 NMOS 版本的一個實例,圖中所示的電池處于故障狀態(tài)。

基于電池充電器應(yīng)用的反向電壓保護(hù)電路

圖 2:具有一個電池充電器的負(fù)載側(cè)保護(hù)電路

當(dāng)電池接入時,電池充電器處于閑置狀態(tài),負(fù)載和電池充電器與反向電池安全去耦。然而,如果充電器變至運行狀態(tài) (例如:附聯(lián)了輸入電源連接器),則充電器在 NMOS 的柵極和源極之間產(chǎn)生一個電壓,這增強了 NMOS,從而實現(xiàn)電流傳導(dǎo)。這一點在圖 3 中更形象。

基于電池充電器應(yīng)用的反向電壓保護(hù)電路

圖 3:傳統(tǒng)的反向電池保護(hù)方案對電池充電器電路無效

負(fù)載和充電器雖與反向電壓隔離,但是起保護(hù)作用的 MOSFET 現(xiàn)在面臨的一大問題是功耗過高。在這種情況下,電池充電器變成了一個電池放電器。當(dāng)電池充電器為 MOSFET 提供了足夠的柵極支持以吸收由充電器輸送的電流時,該電路將達(dá)到平衡。例如,如果一個強大 MOSFET 的 VTH約為 2V,而且充電器能夠在 2V 電壓下提供電流,則電池充電器輸出電壓將穩(wěn)定在 2V (MOSFET 的漏極處在 2V + 電池電壓)。MOSFET 中的功耗為 ICHARGE? (VTH + VBAT),因而使 MOSFET 升溫發(fā)熱,直到產(chǎn)生的熱量散逸離開印刷電路板。該電路的 PMOS 版本也是一樣。

下面將介紹該方法的兩種替代方案,這些替代方案各有優(yōu)缺點。

N 溝道 MOSFET 設(shè)計

第一種方案采用一個 NMOS 隔離器件,如圖 4 所示。

該電路的算法是:如果電池電壓超過了電池充電器輸出電壓,則必須停用隔離 MOSFET。

如同上述的 NMOS 方法一樣,在該電路中,MN1 連接在介于充電器/負(fù)載和電池端子之間接線的低壓側(cè)。然而,晶體管 MP1 和 Q1 現(xiàn)在提供了一個檢測電路,該電路在電池反接的情況下將停用 MN1。反接電池將 MP1 的源極升舉至高于其連接至充電器正端子的柵極。接著,MP1 的漏極通過 R1 將電流輸送至 Q1 的基極。然后,Q1 將 MN1 的柵極分流至地,防止充電電流在 MN1 中流動。R1 負(fù)責(zé)控制在反向檢測期間流到 Q1 的基極電流,而 R2 則在正常操作中為 Q1 的基極提供泄放。R3 賦予了 Q1 將 MN1 的柵極拉至地電位的權(quán)限。R3/R4 分壓器限制 MN1 柵極上的電壓,這樣?xùn)艠O電壓在反向電池?zé)岵灏纹陂g不必下降那么多。最壞情況是電池充電器已經(jīng)處于運行狀態(tài)、產(chǎn)生其恒定電壓電平,附聯(lián)了一個反接電池時。在這種情況下,必需盡可能快地關(guān)斷 MN1,以限制消耗高功率的時間。該電路帶有 R3 和 R4 的這一特殊版本最適合 12V 鉛酸電池應(yīng)用,但是在單節(jié)和兩節(jié)鋰離子電池產(chǎn)品等較低電壓應(yīng)用中,可以免除 R4。電容器 C1 提供了一個超快速充電泵,以在反向電池附聯(lián)期間下拉 MN1 的柵極電平。對于最差情形 (附聯(lián)一個反向電池時充電器已使能的狀況再次出現(xiàn)),C1 非常有用。

該電路的缺點是需要額外的組件,R3/R4 分壓器在電池上產(chǎn)生了一個雖然很小、但卻是持續(xù)的負(fù)載。

此類組件大多是纖巧的。MP1 和 Q1 不是功率器件,而且通常可采用 SOT23-3、SC70-3 或更小的封裝。MN1 應(yīng)具有非常優(yōu)良的導(dǎo)電性,因為它是傳輸器件,但是尺寸不必很大。由于它在深三極管區(qū)工作,并且得到了大幅的柵極強化,因此其功耗即使對于導(dǎo)電性中等的器件來說也很低。例如,100m? 以下的晶體管也經(jīng)常采用 SOT23-3 封裝。

基于電池充電器應(yīng)用的反向電壓保護(hù)電路

圖 4:一款可行的反向電池電路

不過,采用一個小傳輸晶體管的缺點是:與電池充電器串聯(lián)的額外阻抗延長了恒定電壓充電階段的充電時間。例如,如果電池及其配線具有 100m? 的等效串聯(lián)電阻,并且采用了一個 100m? 的隔離晶體管,那么恒定電壓充電階段中的充電時間將加倍。

MP1 和 Q1 組成的檢測和停用電路停用MN1 的速度不是特別快,而且它們無須如此。雖然 MN1 在反向電池附聯(lián)期間產(chǎn)生高功耗,但是關(guān)斷電路只需“在最后”斷開 MN1 連接。它必需在 MN1 升溫幅度大到導(dǎo)致受損之前斷開 MN1 連接。幾十微秒的斷開連接時間可能比較適合。另一方面,在反接電池有機會將充電器和負(fù)載電壓拉至負(fù)值之前停用 MN1 至關(guān)重要,因而需要采用 C1。基本上,該電路具有一條 AC 和一條 DC 停用路徑。

用一個鉛酸電池和 LTC4015 電池充電器對此電路進(jìn)行了測試。如圖 5 所示,當(dāng)反向電池?zé)岵灏螘r電池充電器處于 OFF 狀態(tài)。反向電壓不會被傳送至充電器和負(fù)載。

基于電池充電器應(yīng)用的反向電壓保護(hù)電路

圖 5:充電器處于關(guān)斷狀態(tài)的 NMOS 保護(hù)電路

值得注意的是,MN1 需要一個等于電池電壓的 VDS額定值和一個等于 1/2 電池電壓的 VGS額定值。MP1 需要一個等于電池電壓的 VDS和 VGS額定值。

圖 6 顯示了一種更加嚴(yán)重的情況,就是在反向電池進(jìn)行熱插拔時電池充電器已處于正常運行狀態(tài)。電池反接將下拉充電器側(cè)電壓,直到檢測和保護(hù)電路使其脫離運行狀態(tài),從而讓充電器安全返回至其恒定電壓電平。動態(tài)特性將因應(yīng)用而異,而電池充電器上的電容將對最終結(jié)果起到很大的作用。在該測試中,電池充電器兼具一個高 Q 值陶瓷電容器和一個 Q 值較低的聚合物電容器。

基于電池充電器應(yīng)用的反向電壓保護(hù)電路

圖 6:充電器處于運行狀態(tài)的 NMOS 保護(hù)電路

總之,建議在電池充電器上采用鋁聚合物電容器和鋁電解電容器,以改善正常的正向電池?zé)岵灏纹陂g的性能。由于極度的非線性,純陶瓷電容器會在熱插拔期間產(chǎn)生過高的過沖,背后的原因是:當(dāng)電壓從 0V 升至額定電壓時,其電容的降幅可達(dá)驚人的 80%。這種非線性在低電壓條件下激發(fā)高電流的流動,而當(dāng)電壓上升時則使電容快速遞減;這是一種導(dǎo)致非常高電壓過沖的致命組合。憑經(jīng)驗,一個陶瓷電容器與一個較低 Q 值、電壓穩(wěn)定的鋁電容器甚至鉭電容器的組合似乎是最穩(wěn)健的組合形式。

P 溝道 MOSFET 設(shè)計

圖 7 示出了第二種方法,即采用一個 PMOS 晶體管作為保護(hù)器件。

基于電池充電器應(yīng)用的反向電壓保護(hù)電路

圖 7:PMOS 晶體管傳輸元件版本

在此電路中,MP1 是反向電池檢測器件,MP2 是反向隔離器件。利用 MP1 的源極至柵極電壓來比較電池的正端子與電池充電器輸出。如果電池充電器端子電壓高于電池電壓,則 MP1 將停用主傳輸器件 MP2。因此,如果電池電壓被驅(qū)動至低于地電位,則顯然,檢測器件 MP1 將把傳輸器件 MP2 驅(qū)動至關(guān)斷狀態(tài) (將其柵極干擾至其源極)。不管電池充電器是使能并形成充電電壓還是停用 (0V),它都將完成上述操作。

該電路的最大優(yōu)勢是 PMOS 隔離晶體管 MP2 根本不具備將負(fù)電壓傳送至充電器電路和負(fù)載的權(quán)限。圖 8 對此做了更加清晰的圖解。

基于電池充電器應(yīng)用的反向電壓保護(hù)電路

圖 8:共源共柵效應(yīng)的圖解

通過 R1 在 MP2 的柵極上可實現(xiàn)的最低電壓為 0V。即使 MP2 的漏極被拉至遠(yuǎn)低于地電位,其源極也不會施加顯著的電壓下行壓力。一旦源極電壓降至晶體管高于地電位的 VTH,晶體管將解除自身偏置,而且它的傳導(dǎo)性逐漸消失。源極電壓越接近地電位,晶體管的偏置解除程度越高。這種特性加上簡單的拓?fù)洌沟眠@種方法比前文介紹的 NMOS 方法更受青睞。與 NMOS 方法相比,它確實存在著 PMOS 晶體管導(dǎo)電性較低且成本較高的不足。

盡管比 NMOS 方法簡單,但是該電路還有一個很大的缺點。雖然它始終提供針對反向電壓的保護(hù)作用,但是它可能不會總是將電路連接到電池。當(dāng)柵極如圖所示交叉耦合時,該電路形成了一個閉鎖存儲元件,此元件有可能選擇錯誤的狀態(tài)。雖然難以實現(xiàn),但存在這樣一種情況:充電器正在產(chǎn)生電壓 (比如 12V),在一個較低的電壓 (比如 8V) 附聯(lián)電池,電路斷開連接。

在這種情況下,MP1 的源極至柵極電壓為 +4V,因而強化 MP1 并停用 MP2。這種情況如圖 9 所示,并在節(jié)點上列出了穩(wěn)定的電壓。

基于電池充電器應(yīng)用的反向電壓保護(hù)電路

圖 9:采用 PMOS 保護(hù)電路時可能的阻塞狀態(tài)圖解

為了實現(xiàn)該條件,電池接入時充電器必須已經(jīng)處于運行狀態(tài)。如果電池在充電器使能之前接入,則 MP1 的柵極電壓完全由電池上拉,因而停用 MP1。當(dāng)充電器接通時,它產(chǎn)生一個受控的電流 (而不是高電流沖擊),這降低了 MP1 接通、MP2 關(guān)斷的可能性。

另一方面,如果充電器在電池附聯(lián)之前啟用,則 MP1 的柵極只需簡單地跟隨電池充電器輸出,因為它是由泄放電阻器 R2 上拉的。未接入電池時,MP1 根本沒有接通和使 MP2 脫離運行狀態(tài)的傾向。

當(dāng)充電器已經(jīng)啟動并運行、而電池附聯(lián)在后時,就會出現(xiàn)問題。在這種情況下,在充電器輸出和電池端子之間存在瞬間差異,這將促使 MP1 使 MP2 脫離運行狀態(tài),因為電池電壓強制充電器電容進(jìn)行吸收。這使 MP2 從充電器電容器吸取電荷的能力與 MP1 使 MP2 脫離運行狀態(tài)的能力之間形成了競爭。

該電路也用一個鉛酸電池和 LTC4015 電池充電器進(jìn)行了測試。將一個承受重負(fù)載的 6V 電源作為電池模擬器連接至一個已經(jīng)使能的電池充電器絕對不會觸發(fā)“斷開連接”狀態(tài)。所做的測試并不全面,應(yīng)在關(guān)鍵應(yīng)用中更加全面徹底地進(jìn)行測試。即使電路確已鎖定,停用電池充電器并重新啟用它仍將始終導(dǎo)致重新連接。

故障狀態(tài)可通過人為操控電路 (在 R1 的頂端和電池充電器輸出之間建立臨時連接) 進(jìn)行演示。然而,普遍認(rèn)為該電路更傾向于連接。如果連接失敗確實成為一個問題,那么可以設(shè)計一款利用多個器件停用電池充電器的電路。圖 12 給出了一個更加完整的電路例子。

圖 10 示出了充電器被停用的 PMOS 保護(hù)電路的效果。

請注意,不論什么情況,電池充電器和負(fù)載電壓都不會出現(xiàn)負(fù)電壓傳送。

圖 11 示出了該電路處于“當(dāng)反接電池進(jìn)行熱插拔時充電器已進(jìn)入運行狀態(tài)”這種不利情況下。

與 NMOS 電路的效果相差無幾,在斷開電路連接使傳輸晶體管 MP2 脫離運行狀態(tài)之前,反向電池略微下拉充電器和負(fù)載電壓。

在電路的這個版本中,晶體管 MP2 必須能夠經(jīng)受兩倍于電池電壓的 VDS (一個用于充電器,一個用于反接電池) 和等于電池電壓的 VGS。另一方面,MP1 必須能夠經(jīng)受等于電池電壓的 VDS和兩倍于電池電壓的 VGS。這項要求令人遺憾,因為對于 MOSFET 晶體管來說,額定 VDS始終超過額定 VGS。可以找到具有 30V VGS容限和 40V VDS容限的晶體管,適合鉛酸電池應(yīng)用。為了支持電壓較高的電池,必須增添齊納二極管和限流電阻器來修改電路。

圖 12 示出了一個能夠處理兩個串聯(lián)堆疊鉛酸電池的電路實例。

基于電池充電器應(yīng)用的反向電壓保護(hù)電路

圖 10:充電器處于關(guān)斷狀態(tài)的 PMOS 保護(hù)電路

基于電池充電器應(yīng)用的反向電壓保護(hù)電路

圖 11:充電器處于運行狀態(tài)的 PMOS 保護(hù)電路

ADI 確信其所提供的信息是準(zhǔn)確可靠的。但是,對于其使用以及任何可能因其使用而導(dǎo)致的對第三方專利或其他權(quán)利的侵犯,ADI 公司概不負(fù)責(zé)。規(guī)格如有變更,恕不另行通知。不得暗示或以其他方式授予 ADI 公司任何專利或?qū)@麢?quán)的使用許可。

基于電池充電器應(yīng)用的反向電壓保護(hù)電路

圖 12:較高電壓反向電池保護(hù)。

D1、D3 和 R3 保護(hù) MP2 和 MP3 的柵極免受高電壓的損壞。當(dāng)一個反接電池進(jìn)行熱插拔時,D2 可防止 MP3 的柵極以及電池充電器輸出快速移動至地電位以下。當(dāng)電路具有反接電池或處于錯誤斷開連接閉鎖狀態(tài)時,MP1 和 R1 可檢測出來,并利用缺失的 LTC4015 的 RT 特性來停用電池充電器。

結(jié)論

可以開發(fā)一種面向基于電池充電器應(yīng)用的反向電壓保護(hù)電路。人們開發(fā)了一些電路并進(jìn)行了簡略的測試,測試結(jié)果令人鼓舞。對于反向電池問題并不存在什么高招,不過,希望本文介紹的方法能夠提供充分的啟示,即存在一種簡單、低成本的解決方案。

原文標(biāo)題:為您的電池充電器做一個反向電壓保護(hù)吧~

文章出處:【微信公眾號:亞德諾半導(dǎo)體】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • MOSFET
    +關(guān)注

    關(guān)注

    147

    文章

    7156

    瀏覽量

    213150
  • 充電器
    +關(guān)注

    關(guān)注

    100

    文章

    4126

    瀏覽量

    114877
  • 電池
    +關(guān)注

    關(guān)注

    84

    文章

    10561

    瀏覽量

    129480

原文標(biāo)題:為您的電池充電器做一個反向電壓保護(hù)吧~

文章出處:【微信號:analog_devices,微信公眾號:analog_devices】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    ADI技術(shù)文章 - 電池充電器反向電壓保護(hù)

    負(fù)載和充電器雖與反向電壓隔離,但是起保護(hù)作用的 MOSFET 現(xiàn)在面臨的一大問題是功耗過高。
    發(fā)表于 12-01 13:51 ?2121次閱讀
    ADI技術(shù)文章 - <b class='flag-5'>電池</b><b class='flag-5'>充電器</b>的<b class='flag-5'>反向</b><b class='flag-5'>電壓</b><b class='flag-5'>保護(hù)</b>

    電池充電器反向保護(hù)電路工作原理圖解

    更高電壓電池反接保護(hù) 當(dāng)充電器關(guān)閉時,下圖顯示了 PMOS 保護(hù)電路的效果。需要注意的是,電池
    發(fā)表于 09-21 12:20 ?2219次閱讀
    <b class='flag-5'>電池</b><b class='flag-5'>充電器</b><b class='flag-5'>反向</b><b class='flag-5'>保護(hù)</b><b class='flag-5'>電路</b>工作原理圖解

    展嶸提供賽芯微XB8989AF充電器反向保護(hù)IC

    長期使用的信息器具- 電池續(xù)航時間。 特點 ·充電器反向保護(hù) 電池反接的連接·保護(hù) 連接 集成先
    發(fā)表于 06-16 15:09

    賽芯微充電器反向保護(hù)XB8783A

    、過電流以及負(fù)載短路保護(hù)等精確過充檢測電壓確保安全和充分利用充電。低待機電流消耗小電流在儲藏室里。該設(shè)備不僅針對數(shù)字手機,也可用于任何其他鋰離子和鋰電池供電需要長期
    發(fā)表于 07-04 14:39

    XB6042I2充電器反向保護(hù)

    ·充電器反向保護(hù)連接·電池反向保護(hù)連接·集成先進(jìn)功率MOSFET相當(dāng)于44mΩRDS(開)·DF
    發(fā)表于 04-07 16:46

    電池充電器反向電壓保護(hù)

    的負(fù)載側(cè)保護(hù)電路當(dāng)電池接入時,電池充電器處于閑置狀態(tài),負(fù)載和電池
    發(fā)表于 12-02 09:18

    電池充電器應(yīng)用的反向電壓保護(hù)電路

    的負(fù)載側(cè)保護(hù)電路當(dāng)電池接入時,電池充電器處于閑置狀態(tài),負(fù)載和電池
    發(fā)表于 12-22 07:00

    基于電池充電器應(yīng)用的反向電壓保護(hù)電路

    側(cè)保護(hù)電路當(dāng)電池接入時,電池充電器處于閑置狀態(tài),負(fù)載和電池
    發(fā)表于 12-28 09:37

    實用電池充電器保護(hù)電路集錦

    非常不錯的資料-----實用電池充電器保護(hù)電路集錦
    發(fā)表于 05-17 23:01

    可用于鉛酸電池充電的Pb137充電器電路

    該Pb137充電器電路電子項目可用于鉛酸電池充電。利用PB137穩(wěn)壓電路和其他一些電子部件可以設(shè)計出能夠在1.5伏
    發(fā)表于 09-15 17:51

    實用電池充電器保護(hù)電路的集錦

    實用電池充電器保護(hù)電路的集錦
    發(fā)表于 09-11 10:47 ?19次下載
    實用<b class='flag-5'>電池</b><b class='flag-5'>充電器</b>與<b class='flag-5'>保護(hù)</b>器<b class='flag-5'>電路</b>的集錦

    AN-171:電池充電器反向電壓保護(hù)

    AN-171:電池充電器反向電壓保護(hù)
    發(fā)表于 03-21 09:56 ?13次下載
    AN-171:<b class='flag-5'>電池</b><b class='flag-5'>充電器</b>的<b class='flag-5'>反向</b><b class='flag-5'>電壓</b><b class='flag-5'>保護(hù)</b>

    電池充電器反向電壓保護(hù)準(zhǔn)則

    在該電路中,MN1 連接在充電器/負(fù)載和電池端子之間連接的低側(cè)。
    的頭像 發(fā)表于 06-26 17:50 ?3216次閱讀

    反向電池充電器保護(hù)

    將線性模式單節(jié)鋰離子電池充電器(MAX1551)與比較器(MAX9001)和n溝道FET相結(jié)合,增加了一層電池反接保護(hù)保護(hù)單節(jié)鋰離子
    的頭像 發(fā)表于 01-16 09:47 ?1773次閱讀
    <b class='flag-5'>反向</b><b class='flag-5'>電池</b><b class='flag-5'>充電器</b><b class='flag-5'>保護(hù)</b>

    電池充電器反向電壓保護(hù)

    電子發(fā)燒友網(wǎng)站提供《電池充電器反向電壓保護(hù).pdf》資料免費下載
    發(fā)表于 11-23 09:37 ?2次下載
    <b class='flag-5'>電池</b><b class='flag-5'>充電器</b>的<b class='flag-5'>反向</b><b class='flag-5'>電壓</b><b class='flag-5'>保護(hù)</b>
    主站蜘蛛池模板: 国产人妻精品久久久久久很牛| 亚洲日产2020乱码草莓毕| 蜜桃臀无码内射一区二区三区| 国产老肥熟xxxx| 高清日本片免费观看| a级全黄试频试看30分钟| 24小时日本在线| 中文字幕一区二区三区在线播放| 亚洲欧美日韩精品自拍| 亚洲国产精品VA在线看黑人| 我的美女奴隶| 小草影院免费| 小寡妇好紧进去了好大看视频| 无码丰满人妻熟妇区| 亚洲 欧美 国产 在线 日韩| 亚洲AV综合99一二三四区| 新影音先锋男人色资源网| 亚洲 欧美 清纯 校园 另类| 亚洲va久久久久| 野花日本大全免费高清完整版| 亚洲无遮挡无码A片在线| 一本之道高清视频在线观看| 一二三四电影完整版免费观看| 一本道高清无码v| 在线亚洲精品国产一区麻豆| 97SE亚洲国产综合在线| 99热久久这里只有精品| 边吃胸边膜下床震免费版视频| 大肚婆孕妇网| 国产亚洲免费观看| 久久99re热在线观看视频| 伦理在线影院伦理电影| 欧美熟妇VIVOE精品| 琪琪电影午夜理论片77网| 色精品极品国产在线视频| 亚州中文字幕| 曰批国产精品视频免费观看| 亚洲欧美自拍明星换脸| 中文在线观看| 超碰在线视频caoporn| 国产精人妻无码一区麻豆|