色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Merlin HugeCTR 分級(jí)參數(shù)服務(wù)器簡(jiǎn)介

星星科技指導(dǎo)員 ? 來(lái)源:NVIDIA ? 作者:About Yingcan Wei,A ? 2022-03-31 15:44 ? 次閱讀

參數(shù)服務(wù)器是推薦系統(tǒng)的重要組成部分,但是目前的訓(xùn)練端參數(shù)服務(wù)器由于高延遲和同步問(wèn)題無(wú)法有效解決推理部署中模型過(guò)大的瓶頸。Merlin HugeCTR(以下簡(jiǎn)稱 HugeCTR)團(tuán)隊(duì)針對(duì)傳統(tǒng)參數(shù)服務(wù)器的問(wèn)題重新設(shè)計(jì)了一種分級(jí)推理端參數(shù)服務(wù)器,將 GPU 內(nèi)存作為一級(jí)緩存,Redis 集群作為二級(jí)緩存,RocksDB 作為持久化層,極大提高了推理效率。HugeCTR 團(tuán)隊(duì)將分多期為大家介紹此分級(jí)參數(shù)服務(wù)器的具體設(shè)計(jì)和細(xì)節(jié),本期為系列的第一期。

1. 引言:

傳統(tǒng)訓(xùn)練端參數(shù)服務(wù)器及其缺陷

傳統(tǒng)參數(shù)服務(wù)器維護(hù)和同步模型參數(shù)僅用于訓(xùn)練,worker 節(jié)點(diǎn)執(zhí)行前向和后向計(jì)算。具體來(lái)說(shuō),在訓(xùn)練中:worker 節(jié)點(diǎn)從 server 節(jié)點(diǎn)中拉取其相應(yīng)的參數(shù),進(jìn)行前向計(jì)算,通過(guò)反向傳播計(jì)算梯度,最后將這些梯度推送到服務(wù)器。在推理中,它只執(zhí)行前兩個(gè)步驟。如果部署在高性能設(shè)備集群中,worker 節(jié)點(diǎn)的計(jì)算速度非常快,因此傳統(tǒng) PS 通常會(huì)遇到這兩個(gè)瓶頸:

(1)server 和 worker 之間的 pull 和 push 操作延遲;

(2)從 worker 節(jié)點(diǎn)收到梯度后,server 節(jié)點(diǎn)中的參數(shù)同步問(wèn)題。

由于 GPU 停頓、同步/一致性不足,GPU 的計(jì)算結(jié)構(gòu)很難通過(guò)使用基于 CPU 的實(shí)現(xiàn)的參數(shù)服務(wù)器來(lái)支持?jǐn)?shù)據(jù)并行。在 GPU 內(nèi)存中擬合完整模型以及小批量輸入數(shù)據(jù)和中間網(wǎng)絡(luò)狀態(tài)的需要限制了可以訓(xùn)練和推理的模型的大小。同樣的瓶頸也出現(xiàn)在推理部署中,因?yàn)橥评砉?jié)點(diǎn)也需要從集中的參數(shù)服務(wù)器組中拉取所有需要的模型參數(shù)。當(dāng)請(qǐng)求包含節(jié)點(diǎn)未加載的參數(shù)時(shí),節(jié)點(diǎn)需要再次同步從參數(shù)服務(wù)器拉取參數(shù)。當(dāng)模型參數(shù)版本發(fā)生變化時(shí),需要暫停推理服務(wù),逐個(gè)節(jié)點(diǎn)更新參數(shù)。

使用基于 CPU 的參數(shù)服務(wù)器進(jìn)行模型推理的部署時(shí),上述問(wèn)題非常明顯,特別是推薦模型的部署。

HugeCTR 推理端分級(jí)參數(shù)服務(wù)器

為了解決上述問(wèn)題,我們 HugeCTR 團(tuán)隊(duì)設(shè)計(jì)了一個(gè)全新的參數(shù)服務(wù)器系統(tǒng),利用分布在多個(gè)服務(wù)器機(jī)器上的 GPU 擴(kuò)展深度學(xué)習(xí)應(yīng)用以進(jìn)行推理。我們稱為 HugeCTR Hierarchical GPU-based Inference Parameter Server,簡(jiǎn)稱為 HPS。HPS 處理在并行模型實(shí)例的推理過(guò)程中使用的共享模型參數(shù)(Embedding 向量和權(quán)重)相關(guān)的同步和通信

與其他系統(tǒng)不同,HPS 進(jìn)行了許多專門(mén)針對(duì)高效利用 GPU 的優(yōu)化,包括分布式參數(shù)服務(wù)器分片,以實(shí)現(xiàn) GPU/CPU 中許多龐大 Embedding Table 的并行推理,以及 GPU 友好的緩存、 臨時(shí)數(shù)據(jù)移動(dòng)內(nèi)存、 內(nèi)存管理機(jī)制。

推理端參數(shù)服務(wù)器的支持

支持不同模型的混合部署:如 DeepFM、DCN、DLRM、MMOE 和序列模型 (DIN、DIEN)

支持推理的大輸入數(shù)據(jù)量:Batch_size 大于 1K,look_up per request 超過(guò) 1000。

支持更快的在線熱部署:將完整模型更新/加載到推理節(jié)點(diǎn)進(jìn)行服務(wù)只需不到 10 分鐘(Embedding Table 大小大于 600G)

支持資源隔離:在推理中隔離 GPU 的內(nèi)存,確保推理服務(wù)在生產(chǎn)環(huán)境基于不同的隔離策略。例如一種支持單 GPU/CPU 的模型,通過(guò)第三方工具(如 k8s)重啟和隔離。

支持不同模型獨(dú)立的巨大 Embedding Table:不同模型每個(gè) Embedding Table 大小大于 600G。

支持單個(gè)節(jié)點(diǎn)的多級(jí)緩存:

部分參數(shù)(熱特征)可以放入 GPU 內(nèi)存直接用于推理。

部分參數(shù)(冷特征)可以放入 CPU 內(nèi)存用于 CPU 與 GPU 交換。

Embedding 的其余部分存儲(chǔ)在本地 SSD。

支持模型更新機(jī)制:

模型部署支持特定的性能指標(biāo),在性能下降時(shí)通過(guò)版本控制及時(shí)回滾。

通過(guò)分層緩存機(jī)制來(lái)重疊數(shù)據(jù)的轉(zhuǎn)移以緩解網(wǎng)絡(luò)帶寬瓶頸。

使用最小的 PS 分片粒度不間斷更新,而無(wú)需逐節(jié)點(diǎn)更新。

支持容錯(cuò)和持久性:一個(gè)節(jié)點(diǎn)故障后參數(shù)和服務(wù)可以被恢復(fù)。

支持在線學(xué)習(xí):每分鐘更新密集模型權(quán)重

2. HugeCTR 分級(jí)參數(shù)服務(wù)器組件塊:

CPU 分布式緩存

分布式 Redis 集群

Redis 集群的同步查找:每個(gè)模型實(shí)例從本地化的 GPU 緩存中查找所需的 Embedding key,這也會(huì)將丟失的 Embedding key(在 GPU 緩存中找不到的 key)存儲(chǔ)到丟失的鍵緩沖區(qū)中。丟失的鍵緩沖區(qū)與 Redis 實(shí)例同步交換,Redis 實(shí)例依次對(duì)任何丟失的 Embedding key 執(zhí)行查找操作。因此,分布式 Redis 集群充當(dāng)了二級(jí)緩存,可以完全替代本地化參數(shù)服務(wù)器來(lái)加載所有模型的完整 Embedding table。

GPU 緩存(Embedding Cache)

異步/同步插入

我們支持將丟失的 Embedding key 異步插入到 Embedding Cache 中。該功能可以通過(guò)配置文件中自定義的命中率閾值自動(dòng)激活。當(dāng) Embedding Cache 的真實(shí)命中率高于自定義閾值時(shí),Embedding Cache 會(huì)異步插入缺失的 key。反之則會(huì)以同步方式插入,以確保推理請(qǐng)求的高精度。通過(guò)異步插入方式,與之前的同步方式相比,在 Embedding Cache 達(dá)到用戶定義的閾值后,可以進(jìn)一步提高 Embedding Cache 的真實(shí)命中率。

在線更新

我們支持將增量 Embedding Key 異步刷新到 Embedding Cache 中。當(dāng)稀疏模型文件需要更新到 GPU Embedding Cache 時(shí),會(huì)觸發(fā)刷新操作?;谠诰€訓(xùn)練完成模型的模型版本迭代或增量參數(shù)更新后,需要將最新的 Embedding table 更新到推理服務(wù)器上的 Embedding Cache 中。為了保證運(yùn)行模型可以在線更新,我們將通過(guò)分布式事件流平臺(tái)(Kafka)更新分布式數(shù)據(jù)庫(kù)和持久化數(shù)據(jù)庫(kù)。同時(shí),GPU Embedding Cache 會(huì)刷新現(xiàn)有 Embedding key 的值,并替換為最新的增量 Embedding vector。

本地鍵值存儲(chǔ)

本地 RocksDB 查詢引擎

對(duì)于仍然無(wú)法完全加載到 Redis 集群中的超大規(guī)模 Embdding table 我們將在每個(gè)節(jié)點(diǎn)上啟用本地鍵值存儲(chǔ)(RocksDB)。

RocksDB 的同步查詢:Redis 集群客戶端在分布式 GPU 緩存中查找 Embedding key 時(shí),會(huì)記錄丟失的 Embedding key(在 Redis 集群中未找到的 key),記錄到丟失的 key buffer 中。丟失的 key buffer 與本地 RocksDB 客戶端同步交換,然后將嘗試在本地 SSD 中查找這些 key。最終,SSD 查詢引擎將對(duì)所有模型缺失的 Embedding key 執(zhí)行第三次查找操作。

對(duì)于已經(jīng)存儲(chǔ)在云端的模型存儲(chǔ)庫(kù),RocksDB 將作為本地 SSD 緩存,用于存儲(chǔ) Redis 集群無(wú)法加載的剩余部分。因此,在實(shí)踐中,本地化的 RocksDB 實(shí)例充當(dāng)了三級(jí)緩存。

3. HugeCTR 分級(jí)參數(shù)服務(wù)器的配置和使用:

訓(xùn)練端

配置模型名和 Kafka broker

在訓(xùn)練段,用戶在 CreateSolver 時(shí)需要為當(dāng)前訓(xùn)練的模型提供一個(gè)模型名,這個(gè)模型名將會(huì)被參數(shù)服務(wù)器用于區(qū)分不同模型。

同時(shí),用戶還需要配置 Kafka broker 的端口和 ip,用于將模型發(fā)送到到 Kafka。

增量模型導(dǎo)出接口

用戶可以使用以上接口,將增量模型導(dǎo)出到 Kafka broker,參數(shù)服務(wù)器端將會(huì)自動(dòng)消化 Kafka 的消息。

推理端

Embedding Cache配置:

gpucache: 用戶可自由配置是否使用 GPU 緩存。

gpucacheper: 用于決定 Embedding table 導(dǎo)入到 GPU 緩存的比例,默認(rèn)為 0.5。

hit_rate_threshold: 用戶自定義的閾值,將會(huì)決定 GPU 緩存的更新方式。

使用 hashmap/parallel hashmap 作為 CPU 緩存時(shí)的相關(guān)配置:

num_partitions: Embedding table 將會(huì)被分為多個(gè)分片進(jìn)行存儲(chǔ),這里用于指定分片數(shù)量。

overflow_policy: 當(dāng)緩存占滿時(shí),可選擇隨機(jī)移除或移除最老的 Embedding。

overflow_margin: 用于指定每個(gè)分片儲(chǔ)存的最大 Embedding 數(shù)量。

overflow_resolution_target: 用于指定每個(gè)分片移除 Embedding 的比例,取值為 0 到 1 之間。

initial_cache_rate: 初始的緩存率。

使用 Redis 作為 CPU 緩存時(shí)的相關(guān)配置:

需要配置服務(wù)器 ip 和端口,用戶名以及密碼,其他與 hashmap/parallel hashmap 相同。需要注意的是 num_partitions 必須大于等于 redis 節(jié)點(diǎn)的數(shù)量。

RocksDB:

path: RocksDB 存儲(chǔ)數(shù)據(jù)的路徑,由用戶自行配置。

read_only: 啟用 read_only 后,RocksDB 將無(wú)法更新,適用于靜態(tài) Embedding 的推理。

Kafka:

brokers: 用于設(shè)置 Kafka 服務(wù)器的 ip 和端口。

poll_timeout_ms: 用于數(shù)據(jù)接收的最大等待時(shí)長(zhǎng),超過(guò)該時(shí)間將自動(dòng)把參數(shù)更新送往數(shù)據(jù)存儲(chǔ)層。

max_receive_buffer_size: 用于數(shù)據(jù)接收緩沖區(qū)大小,超過(guò)該大小將自動(dòng)把參數(shù)更新送往數(shù)據(jù)存儲(chǔ)層。

max_batch_size: 用于設(shè)置每次批量數(shù)據(jù)發(fā)送的大小。

4. 結(jié)語(yǔ)

在這一期的 HugeCTR 分級(jí)參數(shù)服務(wù)器簡(jiǎn)介中,我們介紹了傳統(tǒng)參數(shù)服務(wù)器的結(jié)構(gòu)以及 HugeCTR 分級(jí)推理參數(shù)服務(wù)器是如何在其基礎(chǔ)上進(jìn)行設(shè)計(jì)和改進(jìn)的。我們還介紹了我們的三級(jí)存儲(chǔ)結(jié)構(gòu)以及相關(guān)配置使用。在下一期中,我們將著重介紹 HugeCTR 分級(jí)參數(shù)服務(wù)器各個(gè)部件的設(shè)計(jì)細(xì)節(jié),敬請(qǐng)期待。

關(guān)于作者

About Yingcan Wei

GPU計(jì)算專家,畢業(yè)于香港大學(xué),HugeCTR算法組負(fù)責(zé)人。當(dāng)前主要從事HugeCTR的算法設(shè)計(jì)與推理架構(gòu)工作。研究領(lǐng)域包括深度學(xué)習(xí)域適應(yīng),生成對(duì)抗網(wǎng)絡(luò),推薦算法設(shè)計(jì)優(yōu)化。在2020年加入英偉達(dá)前,任職于歐美外資以及互聯(lián)網(wǎng)等企業(yè),擁有多年圖像處理 、數(shù)據(jù)挖掘,推薦系統(tǒng)設(shè)計(jì)開(kāi)發(fā)相關(guān)經(jīng)驗(yàn)。

About Jerry Shi

本科畢業(yè)于加州大學(xué)伯克利分校,在康奈爾大學(xué)獲得碩士文憑。于2021年加入英偉達(dá),在Merlin HugeCTR團(tuán)隊(duì)算法組負(fù)責(zé)推薦系統(tǒng)架構(gòu)與算法的相關(guān)設(shè)計(jì)及開(kāi)發(fā)。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • cpu
    cpu
    +關(guān)注

    關(guān)注

    68

    文章

    10854

    瀏覽量

    211578
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4729

    瀏覽量

    128890
  • 服務(wù)器
    +關(guān)注

    關(guān)注

    12

    文章

    9123

    瀏覽量

    85324
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    RISC架構(gòu)服務(wù)器簡(jiǎn)介

    RISC架構(gòu)服務(wù)器簡(jiǎn)介RISC架構(gòu)服務(wù)器是指采用精簡(jiǎn)指令系統(tǒng)計(jì)算結(jié)構(gòu)(RISC)的服務(wù)器,與IA架構(gòu)服務(wù)器(Intel Xeon處理
    發(fā)表于 11-13 22:01

    Tomcat服務(wù)器簡(jiǎn)介

    簡(jiǎn)介簡(jiǎn)介Tomcat服務(wù)器是一個(gè)開(kāi)放源碼的輕量級(jí)Web應(yīng)用服務(wù)器,非常適合搭建微服務(wù)應(yīng)用。Embedded Tomcat嵌入式Tomcat
    發(fā)表于 12-16 08:24

    中央歸檔服務(wù)器簡(jiǎn)介

    中央歸檔服務(wù)器簡(jiǎn)介 WinCC CAS可最多接收來(lái)自11個(gè)服務(wù)器的數(shù)據(jù)。
    發(fā)表于 04-01 08:55 ?21次下載

    服務(wù)器處理參數(shù)面面觀

    服務(wù)器處理參數(shù)面面觀 1、服務(wù)器處理主頻   服務(wù)器處理
    發(fā)表于 01-27 13:32 ?409次閱讀

    四路串口服務(wù)器的功能特點(diǎn)及規(guī)格參數(shù)簡(jiǎn)介

    ,什么是四路串口服務(wù)器?其功能特點(diǎn)及規(guī)格參數(shù)具體有哪些呢?接下來(lái)我們就一起來(lái)看看吧! 一、四路串口服務(wù)器簡(jiǎn)介 四串口服務(wù)器采用32位ARM9
    的頭像 發(fā)表于 02-12 15:53 ?2000次閱讀

    Merlin HugeCTR V3.4.1版本新增內(nèi)容介紹

    Merlin HugeCTR(以下簡(jiǎn)稱 HugeCTR)是 GPU 加速的推薦程序框架,旨在在多個(gè) GPU 和節(jié)點(diǎn)之間分配訓(xùn)練并估計(jì)點(diǎn)擊率(Click-through rate)。
    的頭像 發(fā)表于 03-10 10:15 ?1052次閱讀

    GPU加速的推薦程序框架Merlin HugeCTR

    Merlin HugeCTR(以下簡(jiǎn)稱 HugeCTR)是 GPU 加速的推薦程序框架,旨在在多個(gè) GPU 和節(jié)點(diǎn)之間分配訓(xùn)練并估計(jì)點(diǎn)擊率(Click-through rate)。
    的頭像 發(fā)表于 03-20 15:30 ?2268次閱讀

    Merlin HugeCTR分級(jí)參數(shù)服務(wù)器:緩存和在線更新設(shè)計(jì)

      在這一期的 HugeCTR 分級(jí)參數(shù)服務(wù)器介紹中,我們介紹了 CPU 分布式緩存,本地緩存,以及在線更新的設(shè)計(jì)細(xì)節(jié)。在下一期中,我們將著重介紹
    的頭像 發(fā)表于 03-31 15:39 ?1548次閱讀
    <b class='flag-5'>Merlin</b> <b class='flag-5'>HugeCTR</b><b class='flag-5'>分級(jí)</b><b class='flag-5'>參數(shù)</b><b class='flag-5'>服務(wù)器</b>:緩存和在線更新設(shè)計(jì)

    如何使用NVIDIA Merlin推薦系統(tǒng)框架實(shí)現(xiàn)嵌入優(yōu)化

    HugeCTR TensorFlow 嵌入插件今天可以從 HugeCTR GitHub 存儲(chǔ)庫(kù)以及 NGC NVIDIA Merlin TensorFlow 容器獲得。如果您是 TensorFlow
    的頭像 發(fā)表于 04-02 14:18 ?1918次閱讀
    如何使用NVIDIA <b class='flag-5'>Merlin</b>推薦系統(tǒng)框架實(shí)現(xiàn)嵌入優(yōu)化

    Merlin HugeCTR v3.6和v3.7版本新增內(nèi)容介紹

    Merlin HugeCTR(以下簡(jiǎn)稱 HugeCTR)是 GPU 加速的推薦程序框架,旨在在多個(gè) GPU 和節(jié)點(diǎn)之間分配訓(xùn)練并估計(jì)點(diǎn)擊率(Click-through rate)。
    的頭像 發(fā)表于 06-17 09:28 ?924次閱讀

    Merlin HugeCTRV 3.8/3.9版本新增內(nèi)容

    Merlin HugeCTR(以下簡(jiǎn)稱 HugeCTR)是 GPU 加速的推薦程序框架,旨在在多個(gè) GPU 和節(jié)點(diǎn)之間分配訓(xùn)練并估計(jì)點(diǎn)擊率(Click-through rate)。
    的頭像 發(fā)表于 08-24 10:12 ?671次閱讀

    Merlin HugeCTR第三代 Embedding 功能優(yōu)化

    Merlin HugeCTR(以下簡(jiǎn)稱 HugeCTR)是 GPU 加速的推薦框架,旨在在多個(gè) GPU 和節(jié)點(diǎn)之間分配訓(xùn)練并估計(jì)點(diǎn)擊率(Click-through rate)。
    的頭像 發(fā)表于 10-20 09:51 ?1006次閱讀

    NVIDIA 人工智能開(kāi)講 | Merlin HugeCTR 與 DeepRec 的深度合作以及最新技術(shù)進(jìn)展

    ”兩大音頻 APP上搜索“ NVIDIA 人工智能開(kāi)講 ”專輯,眾多技術(shù)大咖帶你深度剖析核心技術(shù),把脈未來(lái)科技發(fā)展方向! NVIDIA Merlin HugeCTR? 是 GPU 加速的推薦程序框架
    的頭像 發(fā)表于 11-21 21:05 ?678次閱讀

    Merlin HugeCTR 分級(jí)參數(shù)服務(wù)器系列之三——集成到 TensorFlow

    前兩期中我們介紹了 HugeCTR 分級(jí)參數(shù)服務(wù)器 (HPS)的三級(jí)存儲(chǔ)結(jié)構(gòu)的設(shè)計(jì),相關(guān)配置使用,數(shù)據(jù)后端以及流式在線模型更新方案。本期將為大家介紹如何將 HPS 集成到 Tensor
    的頭像 發(fā)表于 11-22 19:45 ?582次閱讀

    Merlin HugeCTR v4.3 發(fā)布說(shuō)明

    NVIDIA Merlin HugeCTR(以下簡(jiǎn)稱 HugeCTR)是 GPU 加速的推薦框架,旨在在多個(gè) GPU 和節(jié)點(diǎn)之間分配訓(xùn)練并估計(jì)點(diǎn)擊率(Click-through rate)。作為一個(gè)
    的頭像 發(fā)表于 01-05 11:55 ?775次閱讀
    主站蜘蛛池模板: 99久久久无码国产精品AAA| 97人妻无码AV碰碰视频| 成年女人色毛片免费| 黑人干日本美女| 日本久久久| 中文字幕乱码一区久久麻豆樱花 | a视频在线免费观看| 精品一卡2卡三卡4卡乱码精品视频| 热思思| 亚洲午夜无码久久久久蜜臀av| 大伊人青草狠狠久久| 年轻的老师5理伦片| 亚洲一区二区女搞男| 国产精品嫩草影院在线观看免费| 女人的选择hd| 在线免费公开视频| 狠狠色狠狠色88综合日日91| 无码AV毛片色欲欧洲美洲| 91免费永久在线地址| 久久精品国产亚洲AV未满十八| 午夜福利小视频400| 成人免费小视频| 欧美 亚洲 另类 综合网| 中文在线日韩亚洲制服| 九九热视频 这里有精品| 校花在公车上被内射好舒| 高清日本片免费观看| 欧美日本高清动作片www网站| 19不插片免费视频| 久久re这里视频只精品首页| 亚洲精品久久久久一区二区三| 国产成人小视频| 色噜噜狠狠色综合欧洲| 被免费网站在线视频| 欧美亚洲另类丝袜自拍动漫| 99re热精品视频国产免费| 毛片免费观看视频| 做暖暖视频在线看片免费| 久久久久久人精品免费费看| 一区二区三区内射美女毛片| 近亲乱中文字幕|