色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

訓練卷積神經(jīng)網(wǎng)絡(luò)通過繪畫3D地形識別畫家

星星科技指導員 ? 來源:NVIDIA ? 作者:ichelle Horton ? 2022-04-07 17:06 ? 次閱讀

通過一種新開發(fā)的人工智能工具,識別繪畫偽造品變得更容易了。該工具可以精確地識別風格差異,精確到一個畫筆刷毛。 Case Western Reserve University ( CWRU )團隊的 research 通過訓練卷積神經(jīng)網(wǎng)絡(luò),根據(jù)繪畫的 3D 地形來學習和識別畫家。這項工作可以幫助歷史學家和藝術(shù)專家區(qū)分合作作品中的藝術(shù)家,并找到偽造的作品。

鑒定古畫有幾種方法。專家經(jīng)常評估材料的類型和狀態(tài),并使用科學方法,如顯微分析、紅外光譜和反射術(shù)。

但是,這些詳盡的方法非常耗時,可能會導致錯誤。他們也無法識別一件藝術(shù)品的多個畫家。根據(jù)這項研究,像埃爾·格雷科和倫勃朗這樣的畫家經(jīng)常雇傭藝術(shù)家的工作室,以與自己相同的風格繪制畫布的各個部分,使得個人貢獻不明確。

雖然用機器學習分析藝術(shù)品是一個相對較新的領(lǐng)域,但最近的研究集中于將人工智能方法與高分辨率的繪畫圖像相結(jié)合,以了解畫家的風格并識別畫家。研究人員假設(shè), 3D 分析可以保存比圖像更多的數(shù)據(jù),在圖像中,筆觸圖案、油漆沉積和干燥方法等特征可以作為藝術(shù)家獨特的指紋。

CWRU 的安布羅斯·斯瓦西物理學教授、資深作家肯尼斯·辛格( Kenneth Singer )在一份 press release 的報告中說:“ 3D 地形是人工智能“看到”繪畫的一種新方式。”。

研究人員用光學輪廓儀從一個表面提取地形數(shù)據(jù),掃描了同一場景的 12 幅畫,用相同的材料繪制,但由四位不同的藝術(shù)家繪制。光學輪廓儀通過對約 5 至 15 mm 的小方形藝術(shù)片進行采樣,檢測并記錄表面的微小變化,這可歸因于某人如何握住和使用畫筆。

然后,他們訓練一組卷積神經(jīng)網(wǎng)絡(luò)來發(fā)現(xiàn)小斑塊中的模式,為每個藝術(shù)家采樣 160 到 1440 個斑塊。使用 NVIDIA GPU 和 cuDNN 加速深度學習框架,該算法將樣本匹配回單個畫家。

研究小組對一位藝術(shù)家的 180 幅油畫進行了算法測試,將樣本與一位畫家進行了匹配,準確率約為 95% 。

據(jù)合著者、 CWRU 的 Warren E.Rupp 物理學副教授 Michael Hinczewski 所說,在訓練數(shù)據(jù)集有限的情況下,使用如此小的訓練集的能力對于后來的藝術(shù)歷史應用是有希望的。

辛切夫斯基說:“其他大多數(shù)使用人工智能進行藝術(shù)歸屬的研究都集中在整個繪畫的照片上。”。“我們將這幅畫分解成從半毫米到幾厘米見方的虛擬小塊。因此我們甚至不再有關(guān)于主題的信息,但我們可以從單個小塊準確地預測誰畫了它。這太神奇了。”

根據(jù)他們的發(fā)現(xiàn),研究人員將表面形貌視為使用無偏定量分析進行歸因和偽造檢測的額外工具。在與位于馬德里的藝術(shù)保護公司 Factum Arte 的合作下,該團隊正在對西班牙文藝復興時期畫家 El Greco 的幾件作品進行藝術(shù)家工作室歸屬和保護研究。

與研究相關(guān)的數(shù)據(jù)和代碼可通過 GitHub 獲取。這項工作是來自 CWRU 藝術(shù)史和藝術(shù)系、克利夫蘭藝術(shù)學院和克利夫蘭藝術(shù)博物館的研究人員的共同努力。

關(guān)于作者

Michelle Horton 是 NVIDIA 的高級開發(fā)人員通信經(jīng)理,擁有通信經(jīng)理和科學作家的背景。她在 NVIDIA 為開發(fā)者博客撰文,重點介紹了開發(fā)者使用 NVIDIA 技術(shù)的多種方式。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4771

    瀏覽量

    100735
  • NVIDIA
    +關(guān)注

    關(guān)注

    14

    文章

    4983

    瀏覽量

    103006
  • 人工智能
    +關(guān)注

    關(guān)注

    1791

    文章

    47229

    瀏覽量

    238326
收藏 人收藏

    評論

    相關(guān)推薦

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    神經(jīng)網(wǎng)絡(luò)訓練中非常有效。卷積層使用一種被稱為卷積的數(shù)學運算來識別像素值數(shù)組的模式。卷積發(fā)生在隱
    發(fā)表于 10-24 13:56

    卷積神經(jīng)網(wǎng)絡(luò)的基本概念、原理及特點

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學習算法,它在圖像識別、視頻分析、自然語言處理等領(lǐng)域有著廣泛的應用。本文將詳細介紹卷積
    的頭像 發(fā)表于 07-11 14:38 ?1033次閱讀

    怎么對神經(jīng)網(wǎng)絡(luò)重新訓練

    重新訓練神經(jīng)網(wǎng)絡(luò)是一個復雜的過程,涉及到多個步驟和考慮因素。 引言 神經(jīng)網(wǎng)絡(luò)是一種強大的機器學習模型,廣泛應用于圖像識別、自然語言處理、語音識別
    的頭像 發(fā)表于 07-11 10:25 ?452次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別在哪

    結(jié)構(gòu)、原理、應用場景等方面都存在一定的差異。以下是對這兩種神經(jīng)網(wǎng)絡(luò)的詳細比較: 基本結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)是一種多層前饋神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。每個神經(jīng)元之間
    的頭像 發(fā)表于 07-04 09:49 ?9256次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)原理

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細介紹卷積
    的頭像 發(fā)表于 07-03 10:49 ?543次閱讀

    bp神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    結(jié)構(gòu)、原理、應用場景等方面都存在一定的差異。以下是對這兩種神經(jīng)網(wǎng)絡(luò)的比較: 基本結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)是一種多層前饋神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。每個神經(jīng)元之間
    的頭像 發(fā)表于 07-03 10:12 ?1165次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和工作原理

    和工作原理。 1. 引言 在深度學習領(lǐng)域,卷積神經(jīng)網(wǎng)絡(luò)是一種非常重要的模型。它通過模擬人類視覺系統(tǒng),能夠自動學習圖像中的特征,從而實現(xiàn)對圖像的識別和分類。與傳統(tǒng)的機器學習方法相比,CN
    的頭像 發(fā)表于 07-03 09:38 ?609次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓練的是什么

    訓練過程以及應用場景。 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本概念 1.1 卷積神經(jīng)網(wǎng)絡(luò)的定義 卷積
    的頭像 發(fā)表于 07-03 09:15 ?403次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理與實現(xiàn)

    1.卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。 卷積
    的頭像 發(fā)表于 07-02 16:47 ?566次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)及其功能

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細介紹卷積
    的頭像 發(fā)表于 07-02 14:45 ?1583次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    基本概念、結(jié)構(gòu)、訓練過程以及應用場景。 卷積神經(jīng)網(wǎng)絡(luò)的基本概念 1.1 神經(jīng)網(wǎng)絡(luò) 神經(jīng)網(wǎng)絡(luò)是一種受人腦
    的頭像 發(fā)表于 07-02 14:44 ?639次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在圖像識別中的應用

    卷積操作 卷積神經(jīng)網(wǎng)絡(luò)的核心是卷積操作。卷積操作是一種數(shù)學運算,用于提取圖像中的局部特征。在圖像識別
    的頭像 發(fā)表于 07-02 14:28 ?1097次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理、結(jié)構(gòu)及訓練過程

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學習算法,廣泛應用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細介紹卷積
    的頭像 發(fā)表于 07-02 14:21 ?2533次閱讀

    如何訓練和優(yōu)化神經(jīng)網(wǎng)絡(luò)

    神經(jīng)網(wǎng)絡(luò)是人工智能領(lǐng)域的重要分支,廣泛應用于圖像識別、自然語言處理、語音識別等多個領(lǐng)域。然而,要使神經(jīng)網(wǎng)絡(luò)在實際應用中取得良好效果,必須進行有效的
    的頭像 發(fā)表于 07-01 14:14 ?456次閱讀

    基于毫米波雷達的手勢識別神經(jīng)網(wǎng)絡(luò)

    使用3D-CNN對三種手勢進行分類,結(jié)果表明識別率為91%。然而,3D-CNN在數(shù)據(jù)分辨率靈敏度和數(shù)據(jù)要求方面存在局限性。Ref等人的另一項研究[12]介紹了一種定制的多分支卷積
    發(fā)表于 05-23 12:12
    主站蜘蛛池模板: 国产欧美日韩亚洲第一页| 国产精品女上位在线观看| 超碰97免费人妻| 第一次处破女完整版电影| 国产精品一区二区AV白丝在线| 国产一区二区三区四区五在线观看| 精品一区二区免费视频蜜桃网| 久久青草费线频观看国产| 男人电影天堂手机| 日韩视频中文字幕精品偷拍| 午夜伦yy44880影院| 一级毛片视频免费| 91精品欧美一区二区三区| 边摸边吃奶边做激情叫床视| 国产精品一区二区20P| 久久精品无码人妻无码AV蜜臀| 女教师の诱惑| 午夜亚洲WWW湿好爽| 在线精彩视频在线观看免费| 超碰97人在线视频| 国内精品久久人妻无码HD浪潮| 绿巨人www| 十分钟视频影院免费| 伊人影院网| 成人伊人青草久久综合网| 激情男女高潮射精AV免费| 欧美日韩中文字幕综合图区| 亚洲AV国产国产久青草| 猪蜜蜜网站在线观看电视剧| 国产成人精品久久久久婷婷| 久久精品亚洲AV中文2区金莲| 日韩欧美1区| 在线 自拍 综合 亚洲 欧美| 粉色视频午夜网站入口| 久久精品国产亚洲AV妓女不卡| 日本撒尿特写| 中文字幕在线免费视频| 国产精品嫩草影院| 男女XX00上下抽搐动态图| 性欧美videofree中文字幕| AV一区AV久久AV无码|