色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何使用深度學習包在LAMMPS中驅動MD模擬

星星科技指導員 ? 來源:NVIDIA ? 作者:NVIDIA ? 2022-04-08 17:39 ? 次閱讀

幾十年來,分子模擬界在模擬勢能面和原子間作用力時面臨著精度與效率的兩難選擇。深勢,人工神經網絡力場,通過結合經典分子動力學( MD )模擬的速度和密度泛函理論( DFT )計算的準確性來解決這個問題。 這是通過使用 GPU – 優化包 DeePMD-kit 實現的,這是一個用于多體勢能表示和 MD 模擬的深度學習包。

這篇文章提供了一個端到端的演示,演示如何為二維材料石墨烯訓練神經網絡潛力,并使用它在開源平臺大型原子/分子大規模并行模擬器( LAMMPS )中驅動 MD 模擬。 培訓數據可從維也納從頭算模擬軟件包( VASP )獲得 ,或量子濃縮咖啡( QE )。

分子建模、機器學習和高性能計算( HPC )的無縫集成通過分子動力學和從頭算準確性—這完全是通過基于容器的工作流來實現的。利用人工智能技術擬合 DFT 產生的原子間作用力,可以通過線性標度將可訪問的時間和尺寸標度提高幾個數量級。

深度潛能本質上是機器學習和物理原理的結合,它開啟了一種新的計算范式,如圖 1 所示。

pYYBAGJQAvCAExdYAAXj8091ofo087.png

圖 1 。由分子建模、人工智能和高性能計算組成的新計算范式。(圖提供:張林峰博士, DP 技術)

整個工作流如圖 2 所示。數據生成步驟由 VASP 和 QE 完成。數據準備、模型訓練、測試和壓縮步驟使用 DeePMD 工具包完成。模型部署在 LAMMPS 中。

poYBAGJQAveAVl3PAABu4cLew7I826.png

圖 2 。 DeePMD 工作流程圖。

為什么是集裝箱?

容器是一個可移植的軟件單元,它將應用程序及其所有依賴項組合到一個與底層主機操作系統無關的包中。

本文中的工作流程涉及 AIMD 、 DP 培訓和 LAMMPS MD 模擬。使用正確的編譯器設置、 MPI 、 GPU 庫和優化標志從源代碼安裝每個軟件包是非常重要和耗時的。

容器通過為每個步驟提供一個高度優化的 GPU 支持的計算環境來解決這個問題,并且消除了安裝和測試軟件的時間。

NGC 目錄是 GPU 優化的 HPC 和 AI 軟件的集線器,它攜帶了整個 HPC 和 AI 容器 ,可以很容易地部署在任何 GPU 系統上。 NGC 目錄中的 HPC 和 AI 容器經常更新,并進行可靠性和性能測試,這對于加快解決時間是必要的。

還將掃描這些容器的常見漏洞和暴露( CVE ),確保它們沒有任何開放端口和惡意軟件。此外, HPC 容器支持 Docker 和 Singularity 運行時,并且可以部署在云中或本地運行的多[ZFBB]和多節點系統上。

訓練數據生成

模擬的第一步是數據生成。我們將向您展示如何使用 VASP 和 Quantum ESPRESSO 來運行 AIMD 模擬并為 DeePMD 生成訓練數據集。可以使用以下命令從 GitHub 存儲庫下載所有輸入文件:

git clone https://github.com/deepmodeling/SC21_DP_Tutorial.git

VASP

如圖 3 所示,使用具有 98 個原子的二維石墨烯系統。 為了生成訓練數據集,在 300K 下進行 0 。 5ps NVT AIMD 模擬。選擇的時間步長為 0 。 5fs 。 DP 模型是使用固定溫度下 0 。 5ps MD 軌跡的 1000 個時間步長創建的。

由于仿真時間較短,訓練數據集包含連續的系統快照,這些快照高度相關。通常,訓練數據集應從與各種系統條件和配置不相關的快照中采樣。對于這個例子,我們使用了一個簡化的訓練數據方案。對于生產 DP 培訓,建議使用 DP-GEN 利用并行學習方案,以有效探索更多的條件組合。

用投影增強波贗勢描述了價電子與凍結核之間的相互作用。廣義梯度近似交換? Perdew 的相關泛函?伯克?恩澤霍夫。在所有系統中,只有 Γ-point 用于 k-space 采樣。

圖 3 AIMD 模擬中使用了由 98 個碳原子組成的石墨烯系統。

量子濃縮咖啡

AIMD 模擬也可以使用 Quantum ESPRESSO ( NGC 目錄中的container提供)進行。 Quantum ESPRESSO 是一套基于密度泛函理論、平面波和贗勢的開放源代碼,用于 Nan oscale 的電子結構計算和材料建模。 QE 計算中使用了相同的石墨烯結構。以下命令可用于啟動 AIMD 模擬:

$ singularity exec --nv docker://nvcr.io/hpc/quantum_espresso:qe-6.8 cp.x < c.md98.cp.in

培訓數據準備

一旦從 AIMD 仿真中獲得訓練數據,我們希望使用?dpdata因此,它可以作為深層神經網絡的輸入。dpdata包是 AIMD 、 Classic MD 和 DeePMD 工具包之間的格式轉換工具包。

您可以使用方便的工具dpdata將數據直接從 first principles 軟件包的輸出轉換為 DeePMD 工具包格式。對于深勢訓練,必須提供物理系統的以下信息:原子類型、盒邊界、坐標、力、病毒和系統能量。

快照或系統框架在一個時間步中包含所有原子的所有這些數據點,可以以兩種格式存儲,即rawnpy

第一種格式raw是純文本,所有信息都在一個文件中,文件的每一行表示一個快照。不同的系統信息存儲在名為box.raw, coord.raw, force.raw, energy.rawvirial.raw的不同文件中。我們建議您在準備培訓文件時遵循這些命名約定。

force.raw的一個示例:

$ cat force.raw
-0.724 2.039 -0.951 0.841 -0.464 0.363 6.737 1.554 -5.587 -2.803 0.062 2.222
-1.968 -0.163 1.020 -0.225 -0.789 0.343

這個force.raw包含三個框架,每個框架具有兩個原子的力,形成三條線和六列。每條線在一幀中提供兩個原子的所有三個力分量。前三個數字是第一個原子的三個力分量,而下三個數字是第二個原子的力分量。

坐標文件coord.raw的組織方式類似。在box.raw中,應在每行上提供盒向量的九個分量。在virial.raw中,維里張量的九個分量應按XX XY XZ YX YY YZ ZX ZY ZZ的順序提供在每一行上。所有原始文件的行數應相同。我們假設原子類型不會在所有幀中改變。它由type.raw提供,它有一行原子類型,一行一行地寫。

原子類型應該是整數。例如,一個系統的type.raw有兩個原子,分別為零和一:

$ cat type.raw
0 1

將數據格式轉換為raw不是一項要求,但此過程應能說明可作為培訓用 DeePMD 工具包輸入的數據類型。

將第一原理結果轉換為訓練數據的最簡單方法是將其保存為 NumPy 二進制數據。

對于 VASP 輸出,我們準備了一個outcartodata.py腳本來處理 VASP OUTCAR 文件。通過運行以下命令:


$ cd SC21_DP_Tutorial/AIMD/VASP/
$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 python outcartodata.py
$ mv deepmd_data ../../DP/

量化寬松產出:

$ cd SC21_DP_Tutorial/AIMD/QE/
$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 python logtodata.py
$ mv deepmd_data ../../DP/

生成名為deepmd_data的文件夾并將其移動到培訓目錄。它生成五組0/set.000, 1/set.000, 2/set.000, 3/set.000, 4/set.000,每組包含 200 幀。不需要處理每個 set .*目錄中的二進制數據文件。包含set.*文件夾和type.raw文件的路徑稱為系統。如果要訓練非周期系統,應在系統目錄下放置一個空nopbc文件。box.raw不是必需的,因為它是非周期系統。

我們將使用五套中的三套進行培訓,一套用于驗證,另一套用于測試。

深勢模型訓練

深勢模型的輸入是包含前面提到的系統信息的描述符向量。神經網絡包含幾個隱藏層,由線性和非線性變換組成。在這篇文章中,使用了一個三層神經網絡,每層有 25 個、 50 個和 100 個神經元。神經網絡學習的目標值或標簽是原子能。訓練過程通過最小化損失函數來優化權重和偏差向量。

訓練由命令啟動,其中input.json包含訓練參數

$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 dp train input.json

DeePMD 工具包打印培訓和驗證數據集的詳細信息。數據集由輸入腳本的training部分中定義的training_datavalidation_data確定。訓練數據集由三個數據系統組成,而驗證數據集由一個數據系統組成。原子數、批次大小、系統中的批次數以及使用系統的概率均如圖 4 所示。最后一列顯示系統是否假設周期邊界條件。

圖 4 DP 培訓輸出的屏幕截圖。

在培訓期間,每disp_freq培訓步驟都會使用用于培訓模型的批次和驗證數據中的numb_btch批次測試模型的錯誤。在文件disp_file中相應地打印訓練錯誤和驗證錯誤(默認為lcurve.out)。可在輸入腳本中通過訓練和驗證數據集相應部分中的鍵batch_size設置批量大小。

輸出的一個示例:

# step rmse_val rmse_trn rmse_e_val rmse_e_trn rmse_f_val rmse_f_trn lr 0 3.33e+01 3.41e+01 1.03e+01 1.03e+01 8.39e-01 8.72e-01 1.0e-03 100 2.57e+01 2.56e+01 1.87e+00 1.88e+00 8.03e-01 8.02e-01 1.0e-03 200 2.45e+01 2.56e+01 2.26e-01 2.21e-01 7.73e-01 8.10e-01 1.0e-03 300 1.62e+01 1.66e+01 5.01e-02 4.46e-02 5.11e-01 5.26e-01 1.0e-03 400 1.36e+01 1.32e+01 1.07e-02 2.07e-03 4.29e-01 4.19e-01 1.0e-03 500 1.07e+01 1.05e+01 2.45e-03 4.11e-03 3.38e-01 3.31e-01 1.0e-03

如圖 5 所示,訓練誤差隨著訓練步驟單調減少。訓練后的模型在測試數據集上進行了測試,并與 AIMD 仿真結果進行了比較。測試命令是:

$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 dp test -m frozen_model.pb -s deepmd_data/4/ -n 200 -d detail.out

圖 5 有步驟的訓練損失

結果如圖 6 所示。

圖 6 用 AIMD 能量和力測試訓練后的 DP 模型的預測精度。

模型導出和壓縮

模型訓練完成后,生成一個凍結模型,用于 MD 仿真中的推理。從檢查點保存神經網絡的過程稱為“凍結”模型:

$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 dp freeze -o graphene.pb

生成凍結模型后,可以在不犧牲精度的情況下對模型進行壓縮;在 MD 中大大加快推理性能的同時,根據仿真和訓練設置,模型壓縮可以將性能提高 10 倍,在 GPU 上運行時將內存消耗減少 20 倍。

可以使用以下命令壓縮凍結模型,-i表示凍結模型,-o表示壓縮模型的輸出名稱:

$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 dp compress -i graphene.pb -o graphene-compress.pb

LAMMPS 中的模型部署

在 LAMMPS 中實現了一種新的配對方式,以便在前面的步驟中部署經過訓練的神經網絡。對于熟悉 LAMMPS 工作流程的用戶,只需進行最小的更改即可切換到深度潛力。例如,具有 Tersoff 電位的傳統 LAMMPS 輸入具有以下電位設置:

pair_style tersoff
pair_coeff * * BNC.tersoff C

若要使用深電位,請將以前的線路替換為:

pair_style deepmd graphene-compress.pb
pair_coeff * *

輸入文件中的pair_style命令使用 DeePMD 模型來描述石墨烯系統中的原子相互作用。

  • graphene-compress.pb文件表示用于推斷的凍結和壓縮模型。
  • MD 模擬中的石墨烯系統包含 1560 個原子。
  • 周期性邊界條件應用于橫向xy方向,自由邊界應用于z方向。
  • 時間步長設置為 1 fs 。
  • 將系統置于溫度為 300 K 的 NVT 系綜下進行松弛,這與 AIMD 設置一致。

NVT 松弛后的系統配置如圖 7 所示。可以觀察到,深勢可以描述原子結構,在橫平面方向上有小的波紋。在 10ps NVT 松弛后,將系統置于 NVE 系綜下以檢查系統穩定性。

圖 7 深勢弛豫后石墨烯體系的原子構型。

系統溫度如圖 8 所示。

圖 8 NVT 和 NVE 組合下的系統溫度。深勢驅動的分子動力學系統在弛豫后非常穩定。

為了驗證經過訓練的 DP 模型的準確性,從 AIMD 、 DP 和 Tersoff 計算出的徑向分布函數( RDF )如圖 9 所示。 DP 模型生成的 RDF 與 AIMD 模型非常接近,這表明 DP 模型可以很好地描述石墨烯的晶體結構。

圖 9 。分別用 AIMD 、 DP 和 Tersoff 勢計算徑向分布函數。可以觀察到, DP 計算的 RDF 與 AIMD 非常接近。

結論

這篇文章展示了在給定條件下石墨烯的一個簡單案例研究。 DeePMD-kit 軟件包簡化了從 AIMD 到經典 MD 的工作流程,具有很大的潛力,提供了以下關鍵優勢:

TensorFlow 框架中實現高度自動化和高效的工作流。

使用流行的 DFT 和 MD 包(如 VASP 、 QE 和 LAMMPS )的 API

廣泛應用于有機分子、金屬、半導體、絕緣體等。

具有 MPI 和[ZFBB]支持的高效 HPC 代碼。

模塊化,便于其他深度學習潛在模型采用。

此外,使用 NGC 目錄中的 GPU – 優化容器簡化并加速了整個工作流程,省去了安裝和配置軟件的步驟。

關于作者

Jingchao Zhang 是英偉達高等教育和研究團隊的資深解決方案設計師。他也是佛羅里達大學 Nvidia AI 技術中心( NVAITC )的常駐科學家。他獲得了博士學位。愛荷華州立大學機械工程專業。在加入 NVIDIA 之前,他在研究計算領域工作了 8 年。他的研究興趣包括計算材料科學和機器學習。

Yifan Li 是普林斯頓大學化學系一年級研究生。伊凡于 2020 年 7 月在北京大學獲得化學學士學位。他的研究興趣包括分子動力學中的機器學習力場、核量子動力學模擬和自動區分量子化學程序。

Akhil Docca 是 NVIDIA NGC 的高級產品營銷經理,專注于 HPC 和 DL 容器。 Akhil 擁有加州大學洛杉磯分校安德森商學院工商管理碩士學位,圣何塞州立大學機械工程學士學位。

審核編輯:郭婷

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • gpu
    gpu
    +關注

    關注

    28

    文章

    4752

    瀏覽量

    129057
  • 人工智能
    +關注

    關注

    1792

    文章

    47412

    瀏覽量

    238926
  • 編譯器
    +關注

    關注

    1

    文章

    1636

    瀏覽量

    49172
收藏 人收藏

    評論

    相關推薦

    GPU在深度學習的應用 GPUs在圖形設計的作用

    隨著人工智能技術的飛速發展,深度學習作為其核心部分,已經成為推動技術進步的重要力量。GPU(圖形處理單元)在深度學習扮演著至關重要的角色,
    的頭像 發表于 11-19 10:55 ?581次閱讀

    NPU在深度學習的應用

    隨著人工智能技術的飛速發展,深度學習作為其核心驅動力之一,已經在眾多領域展現出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為深度
    的頭像 發表于 11-14 15:17 ?690次閱讀

    GPU深度學習應用案例

    GPU在深度學習的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度
    的頭像 發表于 10-27 11:13 ?415次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習是AI大模型的基礎 技術支撐 :深度
    的頭像 發表于 10-23 15:25 ?914次閱讀

    深度學習反卷積的原理和應用

    深度學習的廣闊領域中,反卷積(Deconvolution,也稱作Transposed Convolution)作為一種重要的圖像上采樣技術,扮演著至關重要的角色。特別是在計算機視覺任務,如圖
    的頭像 發表于 07-14 10:22 ?1963次閱讀

    深度學習的時間序列分類方法

    的發展,基于深度學習的TSC方法逐漸展現出其強大的自動特征提取和分類能力。本文將從多個角度對深度學習在時間序列分類的應用進行綜述,探討常用
    的頭像 發表于 07-09 15:54 ?1029次閱讀

    深度學習的無監督學習方法綜述

    應用往往難以實現。因此,無監督學習深度學習扮演著越來越重要的角色。本文旨在綜述深度
    的頭像 發表于 07-09 10:50 ?820次閱讀

    深度學習在視覺檢測的應用

    深度學習是機器學習領域中的一個重要分支,其核心在于通過構建具有多層次的神經網絡模型,使計算機能夠從大量數據自動學習并提取特征,進而實現對復
    的頭像 發表于 07-08 10:27 ?753次閱讀

    深度學習與nlp的區別在哪

    方法,它通過模擬人腦的神經網絡結構,實現對數據的自動特征提取和學習深度學習的核心是構建多層的神經網絡結構,每一層都包含大量的神經元,這些神經元通過權重連接,實現對輸入數據的逐層抽象和
    的頭像 發表于 07-05 09:47 ?973次閱讀

    深度學習的模型權重

    深度學習這一充滿無限可能性的領域中,模型權重(Weights)作為其核心組成部分,扮演著至關重要的角色。它們不僅是模型學習的基石,更是模型智能的源泉。本文將從模型權重的定義、作用、優化、管理以及應用等多個方面,深入探討
    的頭像 發表于 07-04 11:49 ?1468次閱讀

    深度學習常用的Python庫

    深度學習作為人工智能的一個重要分支,通過模擬人類大腦中的神經網絡來解決復雜問題。Python作為一種流行的編程語言,憑借其簡潔的語法和豐富的庫支持,成為了深度
    的頭像 發表于 07-03 16:04 ?668次閱讀

    深度學習與傳統機器學習的對比

    在人工智能的浪潮,機器學習深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管
    的頭像 發表于 07-01 11:40 ?1430次閱讀

    深度學習在自動駕駛的關鍵技術

    隨著人工智能技術的飛速發展,自動駕駛技術作為其中的重要分支,正逐漸走向成熟。在自動駕駛系統深度學習技術發揮著至關重要的作用。它通過模擬人腦的學習
    的頭像 發表于 07-01 11:40 ?792次閱讀

    深度解析深度學習下的語義SLAM

    隨著深度學習技術的興起,計算機視覺的許多傳統領域都取得了突破性進展,例如目標的檢測、識別和分類等領域。近年來,研究人員開始在視覺SLAM算法引入深度
    發表于 04-23 17:18 ?1320次閱讀
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>學習</b>下的語義SLAM

    什么是深度學習?機器學習深度學習的主要差異

    2016年AlphaGo 擊敗韓國圍棋冠軍李世石,在媒體報道,曾多次提及“深度學習”這個概念。
    的頭像 發表于 01-15 10:31 ?1102次閱讀
    什么是<b class='flag-5'>深度</b><b class='flag-5'>學習</b>?機器<b class='flag-5'>學習</b>和<b class='flag-5'>深度</b><b class='flag-5'>學習</b>的主要差異
    主站蜘蛛池模板: jizz中国女人| 久热这里在线精品| 日本撒尿特写| 国产精品96久久久久久AV网址 | 久久无码人妻AV精品一区| 6 10young俄罗斯| 欧美九十老太另类| 国产成人精品系列在线观看| 亚洲欧美激情精品一区二区| 狂躁美女BBBBBB视频| 爱情岛论坛网亚洲品质| 无人区乱码1区2区3区网站| 精品午夜中文字幕熟女人妻在线| 97精品免费视频| 忘忧草研究所 麻豆| 久久婷婷五月综合色精品首页| qvod免费电影| 亚洲人成人毛片无遮挡| 青青娱乐网| 精品国产自在自线官方| xx顶级欧美熟妞xxhd| 亚洲另类欧美综合在线| 欧洲最大无人区免费高清完整版| 国产一区二区三区乱码在线观看 | 欧美性最猛xxxx在线观看视频| 国产精品成人观看视频免费| 在线观看国产区| 叔叔 电影完整版免费观看韩国| 久久精品亚洲| 国产传媒在线观看| 99久久精品久久久久久清纯| 甜性涩爱快播| 嫩草视频在线观看免费| 黑人巨茎大战白人女40CMO| 成片在线看一区二区草莓| 一个人的HD高清在线观看| 色狠狠色狠狠综合天天| 男男被强bl高h文| 九九热在线视频观看这里只有精品| 成人亚洲精品| 99青草青草久热精品视频|