色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

碳化硅功率模塊封裝中的4個關(guān)鍵問題

今日半導(dǎo)體 ? 來源:汽車工程 ? 作者:汽車工程 ? 2022-05-06 14:57 ? 次閱讀

近幾十年來,以新發(fā)展起來的第 3 代寬禁帶功率半導(dǎo)體材料碳化硅(SiC)為基礎(chǔ)的功率半導(dǎo)體器件,憑借其優(yōu)異的性能備受人們關(guān)注。SiC與第1代半導(dǎo)體材料硅(Si)、鍺(Ge)和第 2 代半導(dǎo)體材料砷化鎵(GaAs)、磷化鎵(GaP)、GaAsAl、GaAsP 等化合物相比,其禁帶寬度更寬,耐高溫特性更強,開關(guān)頻率更高,損耗更低,穩(wěn)定性更好,被廣泛應(yīng)用于替代硅基材料或硅基材料難以適應(yīng)的應(yīng)用場合。

(1)禁帶寬度更寬:SiC 的禁帶寬度比 Si高 3倍以上,使其能耐受的擊穿場強更高(臨界擊穿場強是Si基的 10倍以上),故器件能承受的峰值電壓更高、能輸出的功率更大。相同電壓等級下,SiC功率半導(dǎo)體器件的漂移區(qū)可以做得更薄,可使整體功率模塊的尺寸更小,極大地提高了整個功率模塊的功率密度。另外,導(dǎo)通電阻Ron與擊穿場強的三次方成反比例關(guān)系,耐擊穿場強的能力高,導(dǎo)通電阻小,減小了器件開關(guān)過程中的導(dǎo)通損耗,提升了功率模塊的效率。

(2)耐溫更高:可以廣泛地應(yīng)用于溫度超過600 ℃的高溫工況下,而 Si 基器件在 600 ℃左右時,由于超過其耐熱能力而失去阻斷作用。碳化硅極大提高了功率器件的耐高溫特性。

(3)熱導(dǎo)率更高:SiC 器件的熱導(dǎo)率比 Si高 3 倍以上,高導(dǎo)熱率提升了器件和功率模塊的散熱能力,減低了對散熱系統(tǒng)的要求,有利于提高功率模塊的功率密度。

(4)載流子飽和速率更高:SiC 與 Si 相比,其載流子飽和速率要高 10 倍以上,而 SiC 器件的開關(guān)頻率是Si基IGBT的5~10倍,增強了器件的高頻能力。SiC 器件不僅導(dǎo)通電阻 Ron小,而且開關(guān)過程損耗也低,提升了功率模塊的高頻性能。

(5)臨界位移能力更高:不僅SiC的臨界位移能力比Si高2倍以上,而且SiC器件對輻射的穩(wěn)定性比Si 基高 10~100 倍,SiC 基器件具備更高的抗電磁沖擊和抗輻射破壞的能力。適合用于制作耐高溫抗輻射的大功率微波器件。

然而,現(xiàn)有的封裝技術(shù)大多都是沿用 Si基器件的類似封裝,要充分發(fā)揮碳化硅的以上性能還有諸多關(guān)鍵問題亟待解決。

由于 SiC器件的高頻特性,結(jié)電容小,柵極電荷低,開關(guān)速度快,開關(guān)過程中的電壓和電流的變化率極大,寄生電感在極大的 di/dt 下,極易產(chǎn)生電壓過沖和振蕩現(xiàn)象,造成器件電壓應(yīng)力、損耗的增加和電磁干擾問題。

關(guān)于在高溫、嚴(yán)寒等極端條件下可靠性急劇下降等問題,急需尋求適應(yīng)不同工況的連接材料和封裝工藝,加入三代半交流群,加VX:tuoke08,滿足不同封裝形式的熱特性要求。

針對模塊內(nèi)部互擾、多面散熱、大容量串并聯(lián)、制造成本和難度等問題,適當(dāng)減少熱界面層數(shù),縮減模塊體積,提升功率密度和多功能集成是未來的趨勢。

采用先進散熱技術(shù)、加壓燒結(jié)工藝,設(shè)計功率半導(dǎo)體芯片一體化,優(yōu)化多芯片布局等方式,起著一定的關(guān)鍵作用。

針對上述問題,國內(nèi)外專家及其團隊研發(fā)不同封裝技術(shù),用于提升模塊性能,降低雜散參數(shù),增強高溫可靠性。

美國 Wolfspeed 公司研發(fā)出結(jié)溫超過 225 ℃的高溫 SiC 功率模塊,并將功率模塊的寄生電感降低到5 nH。美國GE公司的全球研究中心設(shè)計了一種疊層母線結(jié)構(gòu),構(gòu)造與模塊重疊并聯(lián)的傳導(dǎo)路徑,使回路電感降至4. 5 nH。德國賽米控公司采用納米銀燒結(jié)和 SKiN 布線技術(shù),研發(fā)出 SiC 功率模塊的高溫、低感封裝方法。德國英飛凌公司采用壓接連 接 技 術(shù) ,研 制 出 高 壓 SiC 功 率 模 塊。德 國Fraunholfer 研究所采用 3D 集成技術(shù)研制出高溫(200 ℃)、低感(≤1 nH)SiC 功率模塊。瑞士 ABB公司采用 3D 封裝布局,研制出大功率低感 SiC 功率模塊。瑞士 ETH 采用緊湊化設(shè)計,優(yōu)化功率回路,研制出寄生電感≤1 nH 的低電感 SiC 功率模塊。日本尼桑公司基于雙層直接敷銅板(direct bonded copper,DBC)封裝,研制出低感 SiC 功率模塊,應(yīng)用于車用電機控制器。

上述碳化硅的優(yōu)良特性,只有通過模塊封裝布局的可靠性設(shè)計、封裝材料的選型、參數(shù)的優(yōu)化、信號的高效和封裝工藝的改善,才能得以充分發(fā)揮。

本文中重點聚焦典型封裝結(jié)構(gòu)下,低雜散參數(shù)、雙面散熱模塊下緩沖層的影響和功率模塊失效機理等關(guān)鍵技術(shù)內(nèi)容的梳理總結(jié),最后展望了未來加壓燒結(jié)封裝技術(shù)和材料的發(fā)展。

1 模塊封裝形式

隨著新興戰(zhàn)略產(chǎn)業(yè)的發(fā)展對第 3代寬禁帶功率半導(dǎo)體碳化硅材料和芯片的應(yīng)用需求,國內(nèi)外模塊封裝技術(shù)也得到迅速發(fā)展,追求低雜散參數(shù)、小尺寸的封裝技術(shù)成為封裝的密切關(guān)注點,國內(nèi)外科研團隊和半導(dǎo)體產(chǎn)業(yè)設(shè)計了結(jié)構(gòu)各異的高性能功率模塊,提升了SiC基控制器的性能。

(1)傳統(tǒng)封裝:Wolfspeed、Rohm 和 Semikron 等制造商大多延用傳統(tǒng)Si基封裝方式,功率等級較低,含有金屬鍵合線,雜散電感較大。

(2)DBC+PCB 混合封裝:Cha 等和 Seal 等把 DBC和 PCB板進行整合,通過鍵合線連接芯片和PCB板,研創(chuàng)出DBC+PCB混合封裝。實現(xiàn)了直接在PCB 層間控制換流回路,縮減換流路徑來減小寄生電感。

(3)SKiN 封裝:德國 Semikron 公司采用納米銀燒結(jié)和SKiN布線技術(shù),采用柔性 PCB板取代鍵合線實現(xiàn)芯片的上下表面電氣連接,模塊內(nèi)部回路寄生電感僅為1. 5 nH。

(4)平面互連封裝:通過消除金屬鍵合線,將電流回路從 DBC 板平面布局拓展到芯片上下平面的層間布局,顯著減小了回路面積,降低了雜散電感參數(shù),如 Silicon Power 公司采用端子直連(DLB)、IR的Cu-Clip IGBT和Siemens的SiPLIT技術(shù)等。

(5)雙面焊接(燒結(jié))封裝:在功率芯片兩側(cè)焊接 DBC 散熱基板,為芯片上下表面提供散熱通道;或者使用銀燒結(jié)技術(shù)將芯片一面焊接 DBC,另一面連接鋁片。雙面散熱既能優(yōu)化基板邊緣場強,還能夠降低電磁干擾(EMI),減小橋臂中點的對地寄生電容,使其具有損耗低、熱性能好、制造成本低等優(yōu)點。橡樹嶺實驗室、中車時代電氣、天津大學(xué)和CPES等可以將寄生電感降低至5 nH。同時,銅燒結(jié)作為一種更低成本的芯片連接方案更被視為是未來幾年的研究熱點。目前雙面散熱技術(shù)主要應(yīng)用在新能源電動車內(nèi)部模塊。

(6)壓接封裝:壓接型器件各層組件界面間依靠壓力接觸實現(xiàn)電熱傳導(dǎo),分為凸臺式和彈簧式兩類。與焊接型器件相比,壓接封裝結(jié)構(gòu)模塊具有高功率密度、雙面散熱、低通態(tài)損耗、抗沖擊能力強、耐失效短路和易于串聯(lián)等優(yōu)點,而且采用數(shù)量較少的壓接型模塊便可滿足換流時電壓等級和容量需求,但由于密封等要求多采用 LTCC 陶瓷設(shè)計,成本較高,且壓接封裝結(jié)構(gòu)復(fù)雜,目前只用于高壓模塊的制造,具有一定的應(yīng)用市場。但離汽車領(lǐng)域的實際應(yīng)用尚有一定的差距。

(7)三維(3D)封裝:Tokuyama等和Herbsommer等將SiC模塊的上橋臂直接疊加在下橋臂上,由于SiC 模塊的結(jié)構(gòu)是垂直型的,可以大幅縮短換流回路的物理長度,以進一步減少與 di/dt 相關(guān)的問題。 目前該封裝技術(shù)最大的優(yōu)勢是可以將模塊寄生電感降至 1 nH 以下。還有將電壓波動最大的端子放置在三維夾心結(jié)構(gòu)的中間,使端子與散熱器之間的寄 生 電 容 急 劇 降 低,進 而 抑 制 了 電 磁 干 擾噪聲。 功率模塊的典型封裝結(jié)構(gòu)剖面圖如圖1所示。

9e7d6cbe-ccfd-11ec-bce3-dac502259ad0.png

2 低雜散電感封裝技術(shù)

目前,引線鍵合分為線材和帶材兩類,根據(jù)金屬特性不同,主要有 Al、Cu和 Au。鋁線是最基本的鍵合方式,鋁帶通流能力更強,強度更高,Au由于其成本較高,應(yīng)用相對較少,銅帶是未來的趨勢。其中柔性箔、鋁涂層銅線和頂部DBC-銅夾技術(shù)也具有一定的應(yīng)用市場。

對于金屬引線鍵合式模塊的 3 維封裝結(jié)構(gòu),通過降維處理,可以極大簡化功率模塊結(jié)構(gòu)的仿真時間,將三維立體結(jié)構(gòu)轉(zhuǎn)換為2D平面結(jié)構(gòu)的研究為整體功率模塊的研究應(yīng)用奠定了基礎(chǔ),如圖2所示。

9e92cafa-ccfd-11ec-bce3-dac502259ad0.png

本文中采用 ANSYS Q3D 仿真軟件進行模型寄生參數(shù)提取,以單條金屬鍵合線的長度l和直徑d作為待優(yōu)化參數(shù),仿真分析l和d對寄生電感的影響特性,如圖3所示。

各層的厚度 h1-h7和邊距 a1-a3為優(yōu)化參數(shù),其中,a3是DBC結(jié)構(gòu)上層銅距離陶瓷層邊沿的距離,因為絕緣性能、DBC小坑和阻焊等工藝的需求,a3普遍等于1 mm。傳統(tǒng)典型2維封裝結(jié)構(gòu)模塊各層寬度w和厚度h的具體尺寸如表1所示。對于金屬引線鍵合式焊接的封裝結(jié)構(gòu),寄生電感主要來自于鍵合線,其寄生電感可近似表示為

9ea5d4ba-ccfd-11ec-bce3-dac502259ad0.png

式中:l為鍵合線長度,l= w1/2+a1;μ0 = 4 ×10-7,是真空磁導(dǎo)率;d為鋁鍵合線的直徑。

參照文獻[30]對鍵合線進行仿真,結(jié)果如圖 4所示。經(jīng)驗證與式(1)的數(shù)據(jù)擬合結(jié)果基本一致。

9eb7594c-ccfd-11ec-bce3-dac502259ad0.png

9ec836ae-ccfd-11ec-bce3-dac502259ad0.png

曾正等的研究表明,芯片功率回路的寄生電容主要由DBC陶瓷層的寄生電容決定,可表示為

9edb7b10-ccfd-11ec-bce3-dac502259ad0.png

式中:ε0 = 8.85 × 10-12F/m,表示真空介電常數(shù);εr =9,表示 Al2O3陶瓷相對介電常數(shù),對于陶瓷 AIN和陶瓷Si3N4,相對介電常數(shù)分別等于8. 8和6. 7。

寄生參數(shù)分布仿真結(jié)果如圖 5 所示,經(jīng)驗證與式(1)和式(2)的數(shù)據(jù)擬合結(jié)果基本一致。

9ef33318-ccfd-11ec-bce3-dac502259ad0.png

由圖 4 和圖 5 還可明顯看出各個關(guān)鍵變量對寄生參數(shù)的影響規(guī)律。鍵合線長度越短、直徑越大,寄生電感越小,其中鍵合線長度對寄生電感影響更顯著;陶瓷層越厚、面積越小,寄生電容越小,其中陶瓷層厚度對寄生電容影響更顯著。

降低開關(guān)器件換流回路中電流流通路徑所通過的面積,可以減小雜散電感,將上半橋 SiC MOSFET的續(xù)流二極管和下半橋的 SiC MOSFET 進行位置互換,減小換流路徑的導(dǎo)通面積,可降低雜散電感,如圖6所示,其仿真結(jié)果如圖7所示。

將功率模塊的封裝模型導(dǎo)入雜散參數(shù)提取軟件ANSYS. Q3D,依次采取網(wǎng)絡(luò)剖分、工況定義的步驟,設(shè)置激勵源(Source)和接地(Sink),并且分別把激勵源添加到功率模塊端子的表面,注意激勵源可以設(shè)置多個,但是接地只能一個,圖 8 是 SiC 模型的網(wǎng)格剖分圖。

牛利剛等研究表明,利用ANSYS. Q3D提取半橋功率模塊的寄生電感為20. 6 nH,實際檢測結(jié)果是21. 23 nH,相差為 0. 63 nH,即相對誤差為 3%,證明了疊層功率模塊雜散電感的仿真提取方法的準(zhǔn)確性。

金屬鍵合線的寄生電感越小,寄生振蕩越輕微,開關(guān)關(guān)斷過程中的電壓沖擊越小,開關(guān)速率越高,開關(guān)損耗越小;與此同時,鍵合線的寄生電容也應(yīng)盡可能小,以抑制電磁干擾的影響。

Lσ 和 Cσ 共同決定電磁干擾(EMI)噪聲的轉(zhuǎn)折頻率fr:

9f052cf8-ccfd-11ec-bce3-dac502259ad0.png

3 雙面散熱技術(shù)

雙面散熱的功率模塊封裝結(jié)構(gòu)可以通過取消金屬鍵合線,增加緩沖層并對緩沖層的形狀、材料、尺寸的優(yōu)化,可減小雜散電感,增加散熱途徑,降低功率模塊中芯片所承受的長時間高溫危害,提高模塊的使用壽命。

根據(jù)雙面散熱結(jié)構(gòu)緩沖層的數(shù)量,分為無緩沖層、單層緩沖層、雙緩沖層 3種,如圖 9所示,其中無緩沖層和雙層緩沖層均為對稱結(jié)構(gòu)。緩沖層可有不同形式,其中有的采用金屬墊塊。文獻[33]中研究了芯片發(fā)熱狀態(tài)下3種模塊所受最高結(jié)溫和金屬墊塊結(jié)構(gòu)所承受的熱應(yīng)力分布情況。

9f1939a0-ccfd-11ec-bce3-dac502259ad0.png

楊寧等的研究發(fā)現(xiàn),不同金屬構(gòu)造的各部分熱應(yīng)力值如表 2所示,而對應(yīng)的仿真云圖如圖 10所示。其中單層金屬緩沖層因結(jié)構(gòu)的不對稱性,對其上下應(yīng)力層需要單獨分析。

從仿真云圖中不難看出:無金屬墊塊緩沖層的雙面散熱結(jié)構(gòu)的最大等效熱應(yīng)力為 99 MPa;單層金屬墊塊緩沖層的雙面散熱結(jié)構(gòu)的上基板最大等效熱應(yīng)力是109MPa,下基板最大等效熱應(yīng)力是70 MPa,上下基板的最大等效應(yīng)力結(jié)果相差較大,主要與芯片和金屬層的熱膨脹系數(shù)、溫度差異有關(guān);雙金屬層墊塊緩沖層的最大等效熱應(yīng)力為81 MPa。

9f29dd0a-ccfd-11ec-bce3-dac502259ad0.png

陸國權(quán)等研究表明,隨著鉬塊厚度的增加,應(yīng)力 緩 沖 效 果 明 顯 ,應(yīng) 變 減 小 。雙 面 互 連 的 SiCMOSFET芯片最大von Mises應(yīng)力和納米銀互連層的最大塑性應(yīng)變均減小。同時,在緩沖層和上基板間燒結(jié)銀互連層中增加 1 mm 銀墊片可進一步降低雙面互連結(jié)構(gòu)的芯片應(yīng)力和互連層應(yīng)變,提高雙面散熱SiC模塊的熱機械可靠性。

與方形緩沖層對比,圓柱形緩沖層可有效消除芯片和納米銀互連層應(yīng)力集中效應(yīng),大幅降低 SiC芯片所承受的最大 von Mises 應(yīng)力和燒結(jié)銀互連層的最大塑性應(yīng)變。采用圓柱形緩沖層時,納米銀層塑性應(yīng)變比采用方形緩沖層時的納米銀層的塑性應(yīng)變值減少了47. 5%。這主要是因為圓柱形緩沖層邊緣過渡圓潤,應(yīng)力分布更均勻,而方形緩沖層的邊緣或尖角易造成芯片和燒結(jié)銀互連層出現(xiàn)應(yīng)力集中,造成局部熱應(yīng)力劇增。

雙面散熱引線鍵合式功率模塊如圖 11 所示。Nakatsu等研究表明,雙面散熱功率模塊的熱阻值比引線鍵合功率模塊約小50%;另外,它還具有優(yōu)異的電學(xué)性能。

Liang等研究表明,雙面散熱功率模塊的開關(guān)損耗降低到商業(yè)功率模塊的 10%,由于鍵合引線會使寄生參數(shù)數(shù)值較大,所以無鍵合線模塊,寄生參數(shù)數(shù)值大幅減小,SiC 芯片的耐高溫、高頻特性優(yōu)勢得到極大發(fā)揮。

9f4b299c-ccfd-11ec-bce3-dac502259ad0.png

模塊封裝中的材料都具有一定的臨界熱應(yīng)力點,超過這一數(shù)值,就會出現(xiàn)斷裂失效的危險。SiC功率模塊的襯底尺寸主要取決于芯片的面積大小,絕緣襯底常規(guī)厚度在0. 03 mm,翹曲率在3 mil/in,陶瓷材料用作絕緣襯底采用直接覆銅技術(shù)。金屬層邊緣采用臺階狀可有效減小應(yīng)力,臺階高度應(yīng)為銅層的一半。

基板主要趨勢是使用高性能材料,減少層數(shù)和界面的數(shù)量,同時保持電、熱和機械特性。絕緣金屬基板(IMS)和IMB基板僅用于中低功率模塊,如EV/HEV等。主流材料正逐漸從直接覆銅(DBC)轉(zhuǎn)向活性金屬釬焊(AMB),并采用高性能基材。雙面冷卻結(jié)構(gòu)將促進在模塊的頂部使用第2個陶瓷基板/引線框架。

直接冷卻的基板,如銷鰭基板,減少熱界面的數(shù)量,避免使用熱界面材料(TIM)。基板和冷卻系統(tǒng)的集成以及冷卻模塊設(shè)計的部署和減少熱接口數(shù)量將是一個強大的趨勢,為未來幾年提供新的解決方案。封裝技術(shù)還需要具備高溫可靠性的陶瓷基板和金屬底板等相應(yīng)套件。

目前能適應(yīng)碳化硅設(shè)備更高運行溫度的硅膠和環(huán)氧材料正在研發(fā)中。為了實現(xiàn)復(fù)雜和緊湊的模塊設(shè)計,在包括EV/HEV等許多應(yīng)用中,硅膠由于其低廉的價格,使用范圍更廣泛。環(huán)氧樹脂材料的應(yīng)用,仍受到高溫下可靠性的限制

4 失效方式匯總

功率模塊的失效機理主要集中在電氣、溫度、材料、化學(xué)等各個方面,如圖12所示。

9f9b78d4-ccfd-11ec-bce3-dac502259ad0.png

功率模塊常見的損壞有過流損壞、過熱損壞和過壓損壞等,過流損壞為流經(jīng)功率模塊的電流超過耐流值,過流沖擊導(dǎo)致芯片發(fā)熱嚴(yán)重,超過結(jié)溫耐溫值,從而損壞芯片。過壓損壞為加在SiC MOSFET的漏極(G)和源極(S)間電壓 UGS大于耐壓值,使得器件極間擊穿損壞。

保障功率模塊的安全運行,不僅要考慮功率模塊電流電壓的可承受范圍,還須考慮驅(qū)動信號添加后,避免導(dǎo)通電路出現(xiàn)短路問題和上下橋臂直通等故障。因此,可以通過增加檢測保護電路和對控制程序進行優(yōu)化來保障功率模塊的安全運行。

各種原因?qū)е碌墓β誓K的真實失效現(xiàn)象如圖13~圖19所示。其中功率模塊里的續(xù)流二極管發(fā)生短路和集電極-發(fā)射極擊穿燒斷等是常見的失效現(xiàn)象。

9fb8bd36-ccfd-11ec-bce3-dac502259ad0.png

9fd35e5c-ccfd-11ec-bce3-dac502259ad0.png

9ff49e96-ccfd-11ec-bce3-dac502259ad0.png

a008a454-ccfd-11ec-bce3-dac502259ad0.jpg

a033c120-ccfd-11ec-bce3-dac502259ad0.jpg

a04aa80e-ccfd-11ec-bce3-dac502259ad0.jpg

對功率模塊通過均勻涂抹導(dǎo)熱硅脂作為熱界面材料(TIM)已經(jīng)不能滿足要求,采用金屬燒結(jié)等方法是下一步的研究方向,另外增加散熱器、風(fēng)扇和溫度傳感器等可有效防止過熱問題。增加電流互感器檢測器件與 RC 緩沖電路和對程序驅(qū)動算法進行優(yōu)化等措施可有效解決過流問題。通過母線電壓采集,進行對比保護等可有效解決過壓問題。

5 先進技術(shù)展望

基于焊接與引線鍵合的傳統(tǒng)材料工藝存在熔點低、高溫蠕變失效、引線纏繞、寄生參數(shù)等無法解決的問題,新型互連材料正從焊接向壓接、燒結(jié)技術(shù)發(fā)展。

與焊接式功率模塊相比,壓接式模塊的優(yōu)勢具體有以下幾點。

(1)焊接通過引線連接芯片和 PCB 板,在多次功率循環(huán)后容易老化脫落,造成模塊失效。而且,焊接層空洞增加熱阻,降低可靠性。壓接借助壓力將芯片壓在基板上,電流從銅板直接流過,提高可靠性。

(2)傳統(tǒng)焊接式多為單面散熱,而壓接式多為雙面散熱,可提升散熱性能,有利于器件性能的充分發(fā)揮。

(3)鍵合線和焊接層引入雜散參數(shù),高頻特性下,電壓和電流易產(chǎn)生較大波動,影響芯片串聯(lián)特性。

考慮到納米銀焊膏具有高導(dǎo)電率、高導(dǎo)熱性和優(yōu)良的延展性,且熔點顯著高于傳統(tǒng)焊料,相關(guān)科研團隊利用納米銀焊膏將芯片和集電極鉬層燒結(jié)在一起,成功開發(fā)出銀燒結(jié)壓接封裝器件,顯示出其在壓接型功率模塊的封裝應(yīng)用中具有一定優(yōu)勢。

銀燒結(jié)封裝可以降低壓接型器件的導(dǎo)通電壓和通態(tài)損耗,減緩芯片與發(fā)射極鉬層間的接觸磨損,提升器件使用壽命。

目前燒結(jié)封裝技術(shù)在發(fā)展中仍然存在著不能忽略的問題,同時也提出如下一些可行性方案。

(1)由于銀和 SiC 芯片背面材料熱膨脹系數(shù)不同引起的問題,可通過添加金屬緩沖層來改善互連性能,但會增加功率模塊封裝工藝的復(fù)雜性和成本。采用滿足性能指標(biāo)和可靠性的燒結(jié)層代替緩沖層,成為研發(fā)的可行性方案。

(2)銀層的電遷移現(xiàn)象,不利于功率電子器件長期可靠應(yīng)用。銅燒結(jié)既能滿足減少電遷移現(xiàn)象,又能夠降低成本,使其成為高溫模具連接材料的一種很有前途的替代品。

(3)優(yōu)化燒結(jié)工業(yè),創(chuàng)新燒結(jié)方案,縮減預(yù)熱、燒結(jié)時長,提升生產(chǎn)效率;流水線工作,提升可制造性和生產(chǎn)設(shè)計的靈活性。

(4)與無壓燒結(jié)相比,低壓燒結(jié)可靠度和散熱性能較好。雖然部分廠商已解決壓力問題,但是燒結(jié)過程中的致密性、連接層的溫控和極限環(huán)境中性能退化問題還尚待解決。

上述問題的解決需要產(chǎn)業(yè)鏈上下游的聯(lián)動協(xié)調(diào)攻關(guān),部分問題隨著技術(shù)進步將逐步得到解決。盡管當(dāng)前模塊封裝幾乎全是以連線鍵合方式為主,預(yù)計未來3~5年銀燒結(jié)封裝技術(shù)會是功率模塊互連的主流技術(shù)。由于銀離子遷移對互聯(lián)結(jié)構(gòu)有負(fù)面影響,加之成本和熱應(yīng)力適配需求,與銀燒結(jié)技術(shù)類似的瞬時液相燒結(jié)(TLPS)、銀銅燒結(jié)、銅燒結(jié)技術(shù)和相應(yīng)的焊漿材料也在快速發(fā)展,部分技術(shù)瓶頸有望在近幾年突破。芯片貼裝、基板連接、模塊與散熱器的連接等都是燒結(jié)技術(shù)潛在的應(yīng)用范圍。

6 結(jié)論

本文重點分析和綜述了碳化硅功率模塊封裝中的 4 個關(guān)鍵問題:

(1)總結(jié)歸納了結(jié)構(gòu)各異的低雜散參數(shù)模塊封裝形式,列舉闡述各模塊性能優(yōu)勢;(2)聚焦典型封裝結(jié)構(gòu)下,分析概括鍵合式功率模塊的金屬鍵合線長度、寬度和并聯(lián)根數(shù)對寄生電感影響,直接覆銅(DBC)陶瓷基板中陶瓷層的面積、高度對寄生電容的影響,以及采用疊層換流技術(shù)優(yōu)化寄生參數(shù)等成果;(3)在封裝模塊散熱方面,綜述了雙面散熱結(jié)構(gòu)的緩沖層厚度和形狀對散熱和應(yīng)力形變的影響;(4)匯總了功率模塊常見失效圖譜和解決措施,為模塊的安全使用提供參考。最后探討了先進燒結(jié)銀技術(shù)的需求和關(guān)鍵問題,并展望了燒結(jié)封裝技術(shù)和材料發(fā)展方向。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 封裝
    +關(guān)注

    關(guān)注

    127

    文章

    7968

    瀏覽量

    143200
  • 功率密度
    +關(guān)注

    關(guān)注

    0

    文章

    90

    瀏覽量

    16905
  • 碳化硅
    +關(guān)注

    關(guān)注

    25

    文章

    2795

    瀏覽量

    49159

原文標(biāo)題:SiC功率模塊封裝技術(shù)及展望!

文章出處:【微信號:today_semicon,微信公眾號:今日半導(dǎo)體】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?

    隨著電力電子技術(shù)的不斷進步,碳化硅MOSFET因其高效的開關(guān)特性和低導(dǎo)通損耗而備受青睞,成為高功率、高頻應(yīng)用的首選。作為碳化硅MOSFET器件的重要組成部分,柵極氧化層對器件的整體性
    發(fā)表于 01-04 12:37

    碳化硅功率器件在能源轉(zhuǎn)換的應(yīng)用

    碳化硅(SiC)功率器件作為一種新興的能源轉(zhuǎn)換技術(shù),因其優(yōu)異的性能在能源領(lǐng)域受到了廣泛的關(guān)注。本文將介紹碳化硅功率器件的基本原理、特點以及在能源轉(zhuǎn)換
    的頭像 發(fā)表于 10-30 15:04 ?255次閱讀

    碳化硅功率器件的工作原理和應(yīng)用

    碳化硅(SiC)功率器件近年來在電力電子領(lǐng)域取得了顯著的關(guān)注和發(fā)展。相比傳統(tǒng)的硅(Si)基功率器件,碳化硅具有許多獨特的優(yōu)點,使其在高效能、高頻率和高溫環(huán)境下的應(yīng)用
    的頭像 發(fā)表于 09-13 11:00 ?662次閱讀
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b>器件的工作原理和應(yīng)用

    碳化硅功率器件的優(yōu)勢和應(yīng)用領(lǐng)域

    在電力電子領(lǐng)域,碳化硅(SiC)功率器件正以其獨特的性能和優(yōu)勢,逐步成為行業(yè)的新寵。碳化硅作為一種寬禁帶半導(dǎo)體材料,具有高擊穿電場、高熱導(dǎo)率、低介電常數(shù)等特點,使得碳化硅
    的頭像 發(fā)表于 09-13 10:56 ?790次閱讀
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b>器件的優(yōu)勢和應(yīng)用領(lǐng)域

    碳化硅功率器件的原理簡述

    隨著科技的飛速發(fā)展,電力電子領(lǐng)域也迎來了前所未有的變革。在這場變革碳化硅(SiC)功率器件憑借其獨特的性能優(yōu)勢,逐漸成為業(yè)界關(guān)注的焦點。本文將深入探討碳化硅
    的頭像 發(fā)表于 09-11 10:47 ?585次閱讀
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b>器件的原理簡述

    碳化硅功率器件的優(yōu)點和應(yīng)用

    碳化硅(SiliconCarbide,簡稱SiC)功率器件是近年來電力電子領(lǐng)域的一項革命性技術(shù)。與傳統(tǒng)的硅基功率器件相比,碳化硅功率器件在性
    的頭像 發(fā)表于 09-11 10:44 ?602次閱讀
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b>器件的優(yōu)點和應(yīng)用

    碳化硅功率器件有哪些優(yōu)勢

    碳化硅(SiC)功率器件是一種基于碳化硅半導(dǎo)體材料的電力電子器件,近年來在功率電子領(lǐng)域迅速嶄露頭角。與傳統(tǒng)的硅(Si)功率器件相比,
    的頭像 發(fā)表于 09-11 10:25 ?654次閱讀
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b>器件有哪些優(yōu)勢

    探究電驅(qū)動系統(tǒng)碳化硅功率器件封裝的三大核心技術(shù)

    在電動汽車、風(fēng)力發(fā)電等電驅(qū)動系統(tǒng)碳化硅功率器件以其優(yōu)異的性能逐漸取代了傳統(tǒng)的硅基功率器件。然而,要充分發(fā)揮碳化硅
    的頭像 發(fā)表于 08-19 09:43 ?429次閱讀
    探究電驅(qū)動系統(tǒng)<b class='flag-5'>中</b><b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b>器件<b class='flag-5'>封裝</b>的三大核心技術(shù)

    碳化硅功率器件的優(yōu)勢和分類

    碳化硅(SiC)功率器件是利用碳化硅材料制造的半導(dǎo)體器件,主要用于高頻、高溫、高壓和高功率的電子應(yīng)用。相比傳統(tǒng)的硅(Si)基功率器件,
    的頭像 發(fā)表于 08-07 16:22 ?632次閱讀
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b>器件的優(yōu)勢和分類

    基本半導(dǎo)體銅燒結(jié)技術(shù)在碳化硅功率模塊的應(yīng)用

    隨著新能源汽車產(chǎn)業(yè)的蓬勃發(fā)展,功率密度的不斷提升與服役條件的日趨苛刻給車載功率模塊封裝技術(shù)帶來了更嚴(yán)峻的挑戰(zhàn)。碳化硅憑借其優(yōu)異的材料特性,成
    的頭像 發(fā)表于 07-18 15:26 ?420次閱讀
    基本半導(dǎo)體銅燒結(jié)技術(shù)在<b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b><b class='flag-5'>模塊</b><b class='flag-5'>中</b>的應(yīng)用

    使用碳化硅模塊的充電設(shè)備設(shè)計

    碳化硅(SiC)功率模塊因其高效能和可靠性,正在迅速成為現(xiàn)代電力電子設(shè)備不可或缺的組件。MPRA1C65-S61是一款先進的SiC模塊,特
    的頭像 發(fā)表于 06-06 11:19 ?348次閱讀
    使用<b class='flag-5'>碳化硅</b><b class='flag-5'>模塊</b>的充電設(shè)備設(shè)計

    碳化硅(SiC)功率器件的開關(guān)性能比較

    過去十年,碳化硅(SiC)功率器件因其在功率轉(zhuǎn)換器的高功率密度和高效率而備受關(guān)注。制造商們已經(jīng)開始采用
    的頭像 發(fā)表于 05-30 11:23 ?855次閱讀
    <b class='flag-5'>碳化硅</b>(SiC)<b class='flag-5'>功率</b>器件的開關(guān)性能比較

    碳化硅壓敏電阻 - 氧化鋅 MOV

    和發(fā)電機繞組以及磁線圈的高關(guān)斷電壓。 棒材和管材EAK碳化硅壓敏電阻 這些EAK非線性電阻壓敏電阻由碳化硅制成,具有高功率耗散和高能量吸收。該系列采用棒材和管材制造,外徑范圍為
    發(fā)表于 03-08 08:37

    碳化硅模塊使用燒結(jié)銀雙面散熱DSC封裝的優(yōu)勢與實現(xiàn)方法

    碳化硅模塊使用燒結(jié)銀雙面散熱DSC封裝的優(yōu)勢與實現(xiàn)方法 新能源車的大多數(shù)最先進 (SOTA)?電動汽車的牽引逆變器體積功率密度范圍從基于 SSC-IGBT?的逆變器的 當(dāng)然,隨著新能源
    的頭像 發(fā)表于 02-19 14:51 ?873次閱讀
    <b class='flag-5'>碳化硅</b><b class='flag-5'>模塊</b>使用燒結(jié)銀雙面散熱DSC<b class='flag-5'>封裝</b>的優(yōu)勢與實現(xiàn)方法

    碳化硅功率器件封裝關(guān)鍵技術(shù)

    碳化硅(Silicon Carbide,SiC)功率器件因其寬禁帶、耐高壓、高溫、低導(dǎo)通電阻和快速開關(guān)等優(yōu)點備受矚目。然而,如何充分發(fā)揮碳化硅器件的性能卻給封裝技術(shù)帶來了新的挑戰(zhàn)。傳統(tǒng)
    的頭像 發(fā)表于 01-26 16:21 ?889次閱讀
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b>器件<b class='flag-5'>封裝</b>的<b class='flag-5'>關(guān)鍵</b>技術(shù)
    主站蜘蛛池模板: 高清观看ZSHH96的视频素材| 1000部做羞羞事禁片免费视频网站| 迅雷成人论坛| 国产99精品视频一区二区三区| 亚洲国产精品嫩草影院| 国产午夜精品不卡观看| 456亚洲人成在线播放网站| 欧洲xxxxx| 国产在线播放91| 俄罗斯6一12呦女精品| 最近中文字幕mv手机免费高清| 性xxxx18公交车| 久久久久久久久久综合情日本| 最近日本字幕免费高清| 亚洲2017久无码| 色中色入口2015| 精品视频免费在线| 在线播放一区二区精品产| 嫩草伊人久久精品少妇AV网站| 国内免费视频成人精品| 最近2019中文字幕免费| 校花在公车上被内射好舒| 人妖欧美一区二区三区四区| 媚药调教被撑到合不拢h| 久久久亚洲国产精品主播 | 国产亚洲美女在线视频视频| 成人免费观看国产高清| a国产成人免费视频| 午夜福利院电影| 久久一区精品| 精品国产免费人成视频| 国产色偷偷男人的天堂| 国产成人免费a在线资源| 成人毛片一区二区三区| 吃寂寞寡妇的奶| 成熟YIN荡美妞A片视频麻豆| old老男人野外树林tv| GAY2022空少被体育生暴菊| 亚洲天堂久久久| 三级黄色片免费观看| 久艾草在线精品视频在线观看|