色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

使用 GaN 功率 IC 提高電機驅動的可靠性和性能

張霞 ? 來源:jfsdfa ? 作者:jfsdfa ? 2022-07-19 10:57 ? 次閱讀

歐盟大約有 80 億臺電動機在使用,消耗了歐盟生產的近 50% 的電力。1由于提高效率和減少碳足跡是政府和行業的主要目標,因此存在多項舉措來降低這些電機的耗電量。例如,許多家用電器能源標簽的全球標準通過降低能耗以及可聽和電氣噪聲等來影響電器的設計。2另一個例子是歐洲引入了工業電機的效率等級,有效地切斷了低效率電機的市場。3,4因此,我們看到了感應電機的興起,例如無刷直流 (BLDC) 電機,它們在相同的機械功率下體積更小、效率更高。5,6這些效率更高、性能更高的電機需要更復雜的電子設備才能運行。用于變速驅動器 (VSD) 或變頻驅動器的脈寬調制技術通過整流交流電源為電機創建脈沖三相電壓。這會提高性能,可以控制速度和扭矩,并對系統的機械設計產生積極影響。在高壓電網側實施有源功率因數校正(PFC),提高電網穩定性,這正在成為政府制定的更嚴格的法規(例如,行業標準IEC61000)。

點擊查看完整大小的圖片

poYBAGLVdeCAfU2qAAd9RpErMDg444.jpg


由無橋圖騰柱 PFC、控制器和三相逆變器級組成的典型變速驅動器

IGBT 很慢

幾十年來,VSD 一直使用 IGBT 作為其主要功率開關。這些傳統的硅晶體管堅固耐用且具有成本效益,但開關速度較慢且損耗相對較高,因此還有改進的空間。對于許多消費類應用,尤其是那些預期在室內運行的應用,需要高于 16 kHz 的開關頻率來降低可聽噪聲。由于其緩慢的反向恢復特性,這些更高的頻率對 IGBT 具有挑戰性,從而導致高開關損耗。硅 MOSFET 也已用于 VSD,但實現的功率密度低于 IGBT,盡管在滿載條件下開關損耗可以更低。MOSFET 的內部體二極管恢復損耗也很差,這會增加總損耗。即使是專門設計的帶有快速恢復二極管的 MOSFET,通常也比 IGBT 產品中的快速恢復二極管更慢、更靈敏。在輕負載運行中,由于其線性電流-電壓關系,MOSFET 確實顯示出優于 IGBT 的優勢。

GaN 在電機驅動中的優勢

通過在功率級中使用氮化鎵,可以在逆變器和電機以及整個系統中實現效率的下一個重要步驟。基于 GaN 的器件更接近理想開關,提供顯著降低的開關損耗并帶來許多不同的好處。

在大多數情況下,VSD 的效率相對較高,通常為 95% 到 97%,這比電機或被驅動的機械過程要高得多。老式電機的效率為 60%,而更現代的 BLDC 電機的工作效率為 80% 或更高。由于開關損耗非常低,這些效率更高的 VSD 系統可提供更好的電氣效率,從而降低系統成本,因為可以顯著減少甚至去除從電源開關中散熱所需的散熱器。在 VSD 的典型硬開關半橋中,具有零反向恢復損耗的 GaN IC 的較低開關損耗可以比 IGBT 或 MOSFET 低 4 到 5 倍,從而將總功率損耗降低50%。在低功率應用中,這甚至可能意味著完全移除散熱器。散熱器級機加工鋁的價格為每公斤 6 至 8 美元——并在 2021 年達到 13 年來的最高水平——這對系統的成本影響很大。此外,減輕重量可降低運輸成本,進一步降低總擁有成本。

點擊查看完整大小的圖片

pYYBAGLVdemAU1fdAALDXVkR6Nw128.jpg


Navitas GaNFast IC 在所有開關頻率上都表現出較低的損耗,但隨著開關頻率的增加而顯著降低。(來源:納微半導體,計算)

硅 IGBT 和 MOSFET 表現出一種稱為反向恢復的現象,即它們的 pn 結在導通狀態下充滿電,而在關斷狀態下被掃出。恢復時間、恢復電荷和恢復電流都會影響反向恢復特性和開關損耗,從而導致系統在開關狀態下出現不受控制的振鈴和電壓過沖和下沖。這同樣適用于級聯 GaN 器件,因為附加的硅 MOSFET 與常開 GaN FET 相結合。

Navitas GaNFast IC 將驅動器與增強型 FET 集成在一起,其中二維電子氣密度產生電子遷移率。由于沒有有源 pn 結,因此不存在固有的體二極管,從而導致器件中沒有反向恢復電荷。這顯著降低了開關損耗,并在開關事件期間提供更平滑的電壓波形,同時具有最小的振鈴,從而提高性能和系統可靠性并降低系統成本。

由于沒有恢復電荷,GaNFast IC 成為硬開關設計的理想選擇,例如半橋拓撲,其中在高側和低側開關轉換期間發生最低開關損耗。兩個開關之間所需的死區時間可以顯著縮短,從大約 2,000 ns 降至 50 ns。對于電機驅動應用,這會顯著降低轉矩脈動和可聽噪聲,從而提高系統的使用壽命。7

自主、可靠的電源:GaNFAST 與 GanSENSE

硅和碳化硅中的 IGBT 和 MOSFET 以類似方式驅動。該器件在 10-20 V 的柵極驅動下開啟,通常關閉至 0 V 或負電壓以實現更高的功率水平。分立增強型 GaN 器件通常需要 5-7 V 的柵極驅動,并且可能還需要負電壓來關閉它們。如果沒有正確優化,性能和可靠性都會受到影響。這是因為,雖然 GaN 是一種先進材料,但分立 GaN FET 確實有一個致命弱點:一個必須小心驅動的柵極節點。如果柵極上的電壓過低,則 FET 沒有完全導通,因此導通電阻和損耗都很高。如果電壓太高,可能會損壞柵極。

為了解決這個問題,GaNFast 功率 IC 將 GaN 功率 (FET) 和 GaN 驅動以及控制和保護集成在一個表面貼裝封裝中。結果是可靠、易于使用、高速、高性能、“數字輸入、電源輸出”的構建塊。自 2018 年初獲得認證以來,GaNFast IC 已成為行業領先的快速和超快速移動充電器解決方案,客戶包括三星、戴爾、聯想和 LG。截至 2022 年 3 月,已出貨超過 4000 萬臺,與 GaN 相關的現場故障報告為零。

點擊查看完整大小的圖片

pYYBAGLVdfSABm08AANtgc9NMfk095.jpg


Navitas 的完全集成 GaNFast 與 GaNSense IC 的簡化框圖結合了控制、驅動、傳感和保護功能。8,9

結果是優化和可重復的逆變器性能,實現了出色的可靠性。電源開關可以通過簡單的數字信號進行控制,去除大量外部元件,并提高尺寸和元件數量,甚至超越硅解決方案。8這對于緊湊型電機驅動器來說是個好消息,其中 VSD 的尺寸現在可以變得如此之小,以至于它可以很容易地裝入電機外殼中。

2021 年,采用 GaNSense 技術的新型 GaNFast 功率 IC 引入了系統感應功能,例如過熱和過流檢測,以及自主自我保護能力。與分立硅或分立 GaN 方法相比,GaNSense 技術僅能在 30 ns 內“檢測和保護”——比硅或 GaN 分立器件快 6 倍——提高了系統級可靠性。

無損電流檢測可以去除大而昂貴的分流電阻器,進一步減小系統尺寸和成本,同時保持快速過流保護以提高系統穩健性。這在用于工廠自動化的工業電機驅動中非常重要,并有助于設計人員在其產品中實施功能安全概念。9

過溫保護電路可以對封裝中的電源開關進行溫度測量,而散熱器上的溫度傳感器的精度要低得多。這對于許多工業和消費電機驅動應用很重要,在這些應用中,冷卻系統可以通過液體流速或冷卻風扇進行調整。內置的過溫保護電路會在溫度過高的情況下關閉 GaN IC,從而保護系統。8

點擊查看完整大小的圖片

poYBAGLVdfuAGunwAAZx-Y81RGY515.jpg


表 1:GaNSense 的主要特性在電機驅動應用的性能、效率和可靠性方面具有顯著優勢。

電機逆變器已經以多種不同的方式實現,主要使用 IGBT 的低成本和電流處理能力。表 2 比較了當今可用的方法(以分立 IGBT 作為基準):

智能電源模塊將一個柵極驅動器與六個電源開關組合在一個封裝中,從而節省系統尺寸和組件數量,同時減少設計工作。

硅 MOSFET,尤其是超結 MOSFET,已在電機驅動中得到越來越多的使用,從而提高了輕負載效率。使用 SiC MOSFET 可以在全負載范圍內獲得更好的效率,但會縮短短路耐受時間。

分立的 GaN FET 有助于進一步降低功耗,但設計人員需要實現復雜的柵極驅動電路。GaN 級聯組件可以提供標準柵極驅動,但代價是更高的功率損耗和成本。

具有 GaNSense 的 GaNFast IC 可實現 GaN FET 的固有效率,而無需處理復雜的柵極驅動電路。無損電流感應消除了分流電阻器并提高了效率、空間和成本,而集成保護電路可實現穩健的逆變器解決方案,只需很少的設計工作。

點擊查看完整大小的圖片

pYYBAGLVdgSAYpDPAAUc_odnuSk023.jpg


表 2:具有 GaNSense 的 GaNFast IC 將柵極驅動復雜性和自主保護與無損電流感應相結合,提供緊湊、易于設計、穩健的系統。

摘要:集成驅動性能

并非每個電機驅動器都是相同的,消費和工業應用的趨勢集中在提高能效、性能、系統成本、總擁有成本以及減小尺寸和重量上。這對世界各地的設計團隊來說是一個巨大的挑戰,他們面臨著減少設計時間和上市時間同時改善最終客戶體驗的壓力。下一代電機驅動系統將利用 GaN FET 性能和先進的傳感技術,提供必要的穩健性和保護,讓您高枕無憂。

參考

1歐盟委員會。“電動機和變速驅動器。”

2酷產品。“洗衣機。”

3 IEC 標準 60034(工業電機效率等級)。

4 EUR-Lex。委員會條例 (EU) 2019/1781。

5智能水雜志。(2019)。“格蘭富的智能水解決方案部署在阿聯酋的 7,000 多座別墅中。”

6 LG電子。“LG AI DD。”

7美國專利 8390241(基于 III 氮化物設備的電機驅動)

8納微半導體。“適用于電動汽車、太陽能和工業的GaNFast電源IC解決方案。” Bodo 的寬帶隙事件,2021 年 12 月。

9納微半導體。“GaNFast 架構,大功率系統中的性能。” Bodo 的寬帶隙事件,2021 年 12 月。

10納微半導體。(2021 年)。應用筆記 AN-015。

11 IEC 標準 60730(消費者應用中的功能安全)和 68100(工業裝置中的功能安全)。

——Alfred Hesener 是 Navitas Semiconductor 工業和消費部門的高級總監



審核編輯 黃昊宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • IC
    IC
    +關注

    關注

    36

    文章

    5957

    瀏覽量

    175740
  • 電機驅動
    +關注

    關注

    60

    文章

    1218

    瀏覽量

    86797
  • GaN
    GaN
    +關注

    關注

    19

    文章

    1944

    瀏覽量

    73603
收藏 人收藏

    評論

    相關推薦

    GaN可靠性測試新突破:廣電計量推出高壓性能評估方案

    GaN可靠性評估及全面性能測試仍面臨挑戰,尤其是高耐性、優異熱阻及極低界面電容等性能測試技術在國內尚待成熟。基于此,廣電計量集成電路測試與分析研究所推出了
    的頭像 發表于 11-28 09:56 ?312次閱讀
    <b class='flag-5'>GaN</b><b class='flag-5'>可靠性</b>測試新突破:廣電計量推出高壓<b class='flag-5'>性能</b>評估方案

    驅動鈦絲(SMA)的可靠性設計(3) 響應時間的設計

    絲發生運動。 相比于傳統的電機、電磁鐵動力,鈦絲是一種新型的動力元件。 鈦絲驅動技術目前已經在航空航天、洲際導彈、無人機、手機、汽車、機器人等科技領域投入使用。 本文通過分享、普及鈦絲驅動技術的
    發表于 11-27 17:46

    如何提高CAN總線的傳輸可靠性

    提高CAN總線的傳輸可靠性可以從多個方面入手,以下是一些具體的方法: 一、優化CAN總線設計 選擇合適的傳輸介質 : 使用屏蔽電纜或光纖等高質量的傳輸介質,以減少電磁干擾和信號衰減。 合理布局與布線
    的頭像 發表于 11-21 10:26 ?350次閱讀

    探索TB62214FG:高性能雙極步進電機驅動IC,助力精確控制

    電機控制領域,工程師們不斷尋找能夠在性能可靠性和易于集成之間達到平衡的組件。東芝的TB62214FG雙極步進電機驅動
    的頭像 發表于 10-31 11:08 ?263次閱讀
    探索TB62214FG:高<b class='flag-5'>性能</b>雙極步進<b class='flag-5'>電機</b><b class='flag-5'>驅動</b><b class='flag-5'>IC</b>,助力精確控制

    PCB高可靠性化要求與發展——PCB高可靠性的影響因素(上)

    在電子工業的快速發展中,印刷電路板(PCB)的可靠性始終是設計和制造的核心考量。隨著集成電路(IC)的集成度不斷提升,PCB不僅需要實現更高的組裝密度,還要應對高頻信號傳輸的挑戰。這些趨勢對PCB
    的頭像 發表于 10-11 11:20 ?355次閱讀
    PCB高<b class='flag-5'>可靠性</b>化要求與發展——PCB高<b class='flag-5'>可靠性</b>的影響因素(上)

    利用TPS2116提高電表應用的系統可靠性

    電子發燒友網站提供《利用TPS2116提高電表應用的系統可靠性.pdf》資料免費下載
    發表于 09-24 09:21 ?1次下載
    利用TPS2116<b class='flag-5'>提高</b>電表應用的系統<b class='flag-5'>可靠性</b>

    如何提高RS485通信的可靠性

    通信可靠性下降。為了確保系統的穩定運行,提高RS485通信的可靠性至關重要。合理的布線與接地布線是影響RS485通信可靠性的重要因素之一。首先,應選擇合適的線纜。R
    的頭像 發表于 09-20 08:07 ?396次閱讀
    如何<b class='flag-5'>提高</b>RS485通信的<b class='flag-5'>可靠性</b>?

    先進IC設計中如何解決產熱對可靠性的影響?

    隨著電子設備性能的不斷提升和微縮技術的進步,熱效應在集成電路(IC)設計中扮演著越來越重要的角色。現代集成電路的高密度和復雜使得熱量的產生和管理成為影響其性能
    的頭像 發表于 08-10 11:14 ?482次閱讀
    先進<b class='flag-5'>IC</b>設計中如何解決產熱對<b class='flag-5'>可靠性</b>的影響?

    Toshiba東芝TB6612FNG電機驅動IC:釋放性能與多功能

    在嵌入式系統和機器人技術領域,電機控制是一個關鍵方面,對項目的性能可靠性有著顯著影響。東芝的TB6612FNG電機驅動
    的頭像 發表于 07-01 14:05 ?849次閱讀
    Toshiba東芝TB6612FNG<b class='flag-5'>電機</b><b class='flag-5'>驅動</b><b class='flag-5'>IC</b>:釋放<b class='flag-5'>性能</b>與多功能<b class='flag-5'>性</b>

    CGD新型ICeGaN GaN功率IC使數據中心、逆變器和工業開關電源的實現超高效率

    采用新型熱阻 增強封裝的 P2 系列表現出超高的電氣性能,支持具有挑戰的高功率應用,堅固可靠 英國劍橋 - 無晶圓廠環保科技半導體公司 Cambridge
    發表于 06-11 14:54 ?3445次閱讀

    CGD為電機控制帶來GaN優勢

    評估套件具有 Qorvo 的高性能無刷直流 / 永磁同步電機控制器 / 驅動器和 CGD 易于使用的 ICeGaN GaN 功率
    發表于 06-07 17:22 ?1752次閱讀
    CGD為<b class='flag-5'>電機</b>控制帶來<b class='flag-5'>GaN</b>優勢

    氮化鎵快充電源ic U8722DE優化系統輕載效率

    氮化鎵快充電源ic U8722DE集成高壓E-Mode GaN FET,為了保障GaN FET工作的可靠性和高系統效率,芯片內置了高精度、高可靠性
    的頭像 發表于 05-08 14:22 ?932次閱讀
    氮化鎵快充電源<b class='flag-5'>ic</b> U8722DE優化系統輕載效率

    如何利用 GaN 功率器件實現出色的中等功率電機變頻器

    們往往無法滿足關鍵變頻器應用對性能和效率的更高要求。 氮化鎵 (GaN) 是一種寬帶隙 (WBG) FET 器件技術,在成本、性能可靠性和易用
    的頭像 發表于 05-05 10:51 ?526次閱讀
    如何利用 <b class='flag-5'>GaN</b> <b class='flag-5'>功率</b>器件實現出色的中等<b class='flag-5'>功率</b><b class='flag-5'>電機</b>變頻器

    集成柵極驅動器的GaN ePower超快開關

    GaN-on-silicon器件的橫向FET結構有助于功率器件和信號器件的單片集成,集成GaN功率ic開始在商業上出現【2】、【3】。這種集
    的頭像 發表于 03-05 14:29 ?2982次閱讀
    集成柵極<b class='flag-5'>驅動</b>器的<b class='flag-5'>GaN</b> ePower超快開關

    線路板變形對電路性能可靠性有影響嗎?

    線路板變形對電路性能可靠性有影響嗎? 線路板是連接和組織電子元件的重要組成部分。線路板的設計和制造對電路性能可靠性有著重要的影響。線路板的變形可能會導致電路的信號傳輸受損、電子元件
    的頭像 發表于 01-29 13:58 ?693次閱讀
    主站蜘蛛池模板: 日本无吗高清| 狠狠撸亚洲视频| 亚洲欧美精品无码一区二在线| 欧美一区二区三区免费播放| 久久99国产亚洲高清观着| 亚洲色图在线观看视频| 女人高潮久久久叫人喷水| 久久精品综合电影| 国内精品日本久久久久影院 | 吃奶摸下的激烈免费视频| 亚洲男人97色综合久久久| 亚洲福利天堂网福利在线观看| 羲义嫁密着中出交尾gvg794| 美女被触手注入精子强制受孕漫画| 丰满少妇69激懒啪啪无码| 亚婷婷洲AV久久蜜臀无码| 久久这里只精品国产99re66| 色欲色香天天天综合| 国产真实强被迫伦姧女在线观看| 99re久久热最新地址一| 最近中文字幕在线中文高清版| 人妻兽虐曲| 日本免费一区二区三区四区五六区 | 二级特黄绝大片免费视频大片| 成人无码精品1区2区3区免费看| 岛国在线无码免费观| 最新国产在线视频在线| 中文字幕在线观看亚洲视频| 91久久偷偷做嫩草影院免| 一个人的视频全免费在线观看www 一个人的免费完整在线观看HD | 久久全国免费久久青青小草| 伦理片在线线249| 久草在线福利资站免费视频| 精品一区二区三区高清免费观看 | 吻嘴胸全身好爽床大全| 秋霞在线观看视频一区二区三区| 青娱乐极品视觉盛宴国产视频| 久久黄色免费| 国拍在线精品视频免费观看| 姐姐不~不可以动漫在线观看| 久久99热狠狠色一区二区|