由 AI 提供支持的應(yīng)用,正在日益普遍地被部署到邊緣和終端,高性能 AI 推斷正在推動更智慧的城市和高度自動化的智能工廠步入現(xiàn)實(shí)。隨著智能零售引入了極為精致的自動化購物體驗(yàn),零售體驗(yàn)也變得更加精巧細(xì)膩。這些應(yīng)用需要具備極高可靠性并提供高性能,同時(shí)也需要提供高效緊湊的外形尺寸。
邊緣處理難題
在邊緣部署系統(tǒng)時(shí),功耗、占板面積和成本都是制約因素。在邊緣處理的種種限制條件下,處理需求的不斷提高,意味著提供所需的性能水平將面臨更大的挑戰(zhàn)。雖然 CPU 在邊緣計(jì)算上也有發(fā)展,但近年來的增長速度有所放緩。在為新一代AI 支持的邊緣應(yīng)用交付所需性能時(shí),未加速的 CPU 表現(xiàn)得相當(dāng)勉強(qiáng),特別是考慮到嚴(yán)格的時(shí)延要求。
當(dāng)在邊緣上實(shí)現(xiàn)前沿 AI 應(yīng)用時(shí),領(lǐng)域?qū)S眉軜?gòu) (DSA) 是關(guān)鍵。此外,DSA 還提供確定性和低時(shí)延。
合適的 DSA 專門設(shè)計(jì)用于高效處理所需數(shù)據(jù),既有 AI 推斷,也有非 AI 部分的應(yīng)用,也就是整體應(yīng)用的加速。考慮到 AI 推斷需要非 AI 的預(yù)處理和后處理,這些都需要更高的性能,這一點(diǎn)很重要。從根本上說,要在邊緣上(和其他地方)實(shí)現(xiàn)由 AI 提供支持的高效應(yīng)用,需要整體應(yīng)用的加速。
如同任何固定功能的芯片解決方案一樣,為 AI 邊緣應(yīng)用開發(fā)的應(yīng)用專用標(biāo)準(zhǔn)產(chǎn)品 (ASSP) 仍有自己的局限性。主要挑戰(zhàn)在于 AI 創(chuàng)新的速度異乎尋常。與非 AI 技術(shù)相比,AI模型的過時(shí)速度會快得多。使用固定功能的芯片器件實(shí)現(xiàn) AI,會因更新型、更高效AI 模型的出現(xiàn)而迅速過時(shí)。固定功能芯片器件的流片需要花費(fèi)數(shù)年時(shí)間,到那時(shí) AI 模型的前沿技術(shù)將已經(jīng)向前發(fā)展。此外,對于邊緣應(yīng)用,安全和功能安全要求的重要性也在提高,可能經(jīng)常需要成本高昂的現(xiàn)場更新。
自適應(yīng)計(jì)算的前景
自適應(yīng)計(jì)算包含能夠針對具體應(yīng)用進(jìn)行優(yōu)化的硬件,例如現(xiàn)場可編程門陣列 (FPGA),它是一個(gè)功能強(qiáng)大的解決方案,專門用于基于AI 的邊緣應(yīng)用。
此外,新的自適應(yīng)硬件也層出不窮,包括含有 FPGA 架構(gòu)并與一個(gè)或多個(gè)嵌入式 CPU 子系統(tǒng)耦合的自適應(yīng)片上系統(tǒng) (SoC)。然而自適應(yīng)計(jì)算遠(yuǎn)不止“純硬件”。它整合了一套綜合而全面的設(shè)計(jì)軟件和運(yùn)行時(shí)軟件。將它們結(jié)合起來,就形成了一種獨(dú)特的自適應(yīng)平臺,可在其上構(gòu)建非常靈活高效的系統(tǒng)。
用自適應(yīng)計(jì)算實(shí)現(xiàn) DSA,可避免使用 ASIC 等定制芯片器件所需的設(shè)計(jì)時(shí)間和前期成本。這樣就能為任何特定領(lǐng)域應(yīng)用,包括基于 AI的邊緣應(yīng)用,迅速部署經(jīng)過優(yōu)化的靈活的解決方案。自適應(yīng)SoC 是此類領(lǐng)域?qū)S锰幚淼睦硐脒x擇,因?yàn)樗鼈兗葥碛芯C合全面的嵌入式CPU 子系統(tǒng)的靈活性,又具備自適應(yīng)硬件的優(yōu)異的數(shù)據(jù)處理能力。
推出自適應(yīng)模塊化系統(tǒng) — SOM
模塊化系統(tǒng) (SOM) 提供完整的、可量產(chǎn)的計(jì)算平臺。與從芯片級從頭開發(fā) (chip-down development)相比,這種方法能節(jié)省可觀的開發(fā)時(shí)間與成本。SOM 能夠插入到較大的邊緣應(yīng)用系統(tǒng)內(nèi),從而既可以提供定制實(shí)現(xiàn)方案的靈活性,又可以提供現(xiàn)成解決方案的易用性和更快的上市速度。這些優(yōu)勢讓 SOM 成為邊緣 AI 應(yīng)用的理想平臺。然而,要實(shí)現(xiàn)現(xiàn)代化AI 應(yīng)用所需的性能,加速必不可少。
某些應(yīng)用需要定制硬件組件與自適應(yīng) SoC 接口連接,意味著需要從芯片級從頭設(shè)計(jì) (Chip-down design)。然而,越來越多基于 AI 的邊緣應(yīng)用,需要相似的硬件組件和接口,甚至在終端應(yīng)用迥異的時(shí)候也是如此。隨著企業(yè)轉(zhuǎn)向標(biāo)準(zhǔn)化接口和通信協(xié)議,盡管處理需求顯著不同,但同一套組件可適用于各種類型的應(yīng)用。
面向基于 AI 的邊緣應(yīng)用的自適應(yīng) SOM, 結(jié)合了自適應(yīng) SoC與行業(yè)標(biāo)準(zhǔn)接口和組件,使得硬件經(jīng)驗(yàn)有限甚至沒有硬件經(jīng)驗(yàn)的開發(fā)者也可以獲益于自適應(yīng)計(jì)算技術(shù)。自適應(yīng)SoC 既能實(shí)現(xiàn) AI 處理,也能實(shí)現(xiàn)非 AI 處理,也就是說其可以滿足整體應(yīng)用的處理需求。
此外,自適應(yīng) SOM 上的自適應(yīng) SoC 支持高度的定制化。它的設(shè)計(jì)目的,是集成到更大型的系統(tǒng)內(nèi)并使用預(yù)定義的外形尺寸。使用自適應(yīng) SOM,可以全面發(fā)揮自適應(yīng)計(jì)算的優(yōu)勢,同時(shí)避免了從芯片級從頭開始的芯片設(shè)計(jì)。自適應(yīng) SOM 只是解決方案的一個(gè)部分。軟件也是關(guān)鍵。
采用自適應(yīng) SOM 的企業(yè),能廣泛受益于性能、靈活性和快速開發(fā)時(shí)間的獨(dú)特組合。無需構(gòu)建自己的電路板,他們就能夠享受自適應(yīng)計(jì)算提供的各種優(yōu)勢 — 這個(gè)優(yōu)勢,最近才隨著賽靈思Kria?自適應(yīng) SOM 產(chǎn)品組合的推出在邊緣得以實(shí)現(xiàn)。
Kria K26 SOM 構(gòu)建在 Zynq? UltraScale+? MPSoC 架構(gòu)頂端,搭載四核 Arm? Cortex?-A53 處理器,超過25萬個(gè)邏輯單元和一個(gè) H.264/265 視頻編解碼器。此外,該 SOM 還搭載4GB的DDR4存儲器、69 個(gè) 3.3V I/O 和 116 個(gè) 1.8V I/O,使之能夠適配幾乎任何處理器或接口。憑借1.4TOPS的AI算力,與基于 GPU 的 SOM 相比,Kria K26 SOM 助力開發(fā)者開發(fā)出時(shí)延和功耗更低,性能高 3 倍的視覺 AI 應(yīng)用。這對安保、交通與市政攝像頭、零售分析、機(jī)器視覺和視覺引導(dǎo)機(jī)器人等智能視覺應(yīng)用,可謂是重大福音。通過標(biāo)準(zhǔn)化系統(tǒng)核心部分,開發(fā)者擁有更多時(shí)間專心開發(fā)自己的專屬特性,從而在市場競爭中實(shí)現(xiàn)技術(shù)差異化。
與軟件可以更新但受到固定加速器限制的其他邊緣 AI 產(chǎn)品不同,Kria SOM 在兩個(gè)方面提供靈活性,即軟件和硬件都能在今后更新。用戶能夠適配 I/O 接口、視覺處理和 AI 加速器,為以下的部分或全部應(yīng)用提供支持:MIPI、LVDS 和SLVS-EC 接口;適用于日間或夜間的高質(zhì)量專用高動態(tài)范圍成像算法;8 位深度學(xué)習(xí)處理單元;或未來的 4 位甚至是 2 位深度神經(jīng)網(wǎng)絡(luò)方法。多模傳感器融合與實(shí)時(shí) AI 處理的結(jié)合,如今已經(jīng)非常容易實(shí)現(xiàn),可以從賽靈思 KV260 視覺 AI 入門套件開始設(shè)計(jì),通過 Kria K26 SOM 部署到生產(chǎn)中。
面向軟硬件開發(fā)者提供的優(yōu)勢
自適應(yīng) SOM 同時(shí)讓硬件開發(fā)者和軟件開發(fā)者受益。對于硬件開發(fā)者,自適應(yīng) SOM 提供了現(xiàn)成的、可量產(chǎn)的解決方案,從而節(jié)省了大量的開發(fā)成本與開發(fā)時(shí)間。此外,這些器件也允許硬件團(tuán)隊(duì)在流程后期變更設(shè)計(jì),而基于固定功能芯片技術(shù)的 SOM 則無法實(shí)現(xiàn)。
對于 AI 開發(fā)者和軟件開發(fā)者來說,自適應(yīng)計(jì)算比過去更容易應(yīng)用。賽靈思為確保自適應(yīng)計(jì)算的易用性,對工具流進(jìn)行了大量投資。通過將軟硬件平臺與可量產(chǎn)的視覺加速應(yīng)用相結(jié)合,Kria SOM 產(chǎn)品組合的推出將這種易用性提升到全新水平。這些交鑰匙應(yīng)用取消了所有 FPGA 硬件設(shè)計(jì)工作,只需要軟件開發(fā)者集成他們的定制 AI 模型、應(yīng)用代碼并有選擇地修改視覺流水線。在 Vitis? 統(tǒng)一軟件開發(fā)平臺和庫支持下,他們可以使用熟悉的設(shè)計(jì)環(huán)境,如 TensorFlow、Pytorch 或 Caffe 框架以及 C、C++、OpenCL? 和 Python 編程語言。
通過這種面向軟件設(shè)計(jì)的新的加速應(yīng)用范式,賽靈思還面向邊緣應(yīng)用推出了首個(gè)嵌入式應(yīng)用商店,為客戶提供來自賽靈思及其生態(tài)系統(tǒng)合作伙伴的豐富多樣的 Kria SOM 應(yīng)用選擇。賽靈思解決方案屬于免費(fèi)提供的開源加速應(yīng)用,包含智能攝像頭、人臉檢測、帶有智能視覺輔助的自然語言處理等多種應(yīng)用。
靈活應(yīng)變的未來
AI 模型將繼續(xù)以高速步伐向前演進(jìn)發(fā)展。這意味著加速平臺必須能夠靈活應(yīng)變,才能在現(xiàn)在和未來以最佳方式實(shí)現(xiàn) AI 技術(shù)。實(shí)際上,SOM 提供了理想的邊緣處理平臺。與自適應(yīng) SoC 相結(jié)合,SOM 為由 AI 提供支持的應(yīng)用,提供了綜合全面、可量產(chǎn)的平臺。采用這類器件的企業(yè)能廣泛受益于性能、靈活性和快速開發(fā)時(shí)間的獨(dú)特組合,并從自適應(yīng)計(jì)算種收獲豐厚的回報(bào)。
-
FPGA
+關(guān)注
關(guān)注
1629文章
21748瀏覽量
603885 -
硬件
+關(guān)注
關(guān)注
11文章
3341瀏覽量
66257 -
AI
+關(guān)注
關(guān)注
87文章
30996瀏覽量
269296 -
邊緣計(jì)算
+關(guān)注
關(guān)注
22文章
3097瀏覽量
49054
發(fā)布評論請先 登錄
相關(guān)推薦
評論