Nanodcal是一款基于非平衡態格林函數-密度泛函理論(NEGF - DFT)的第一性原理計算軟件,主要用于模擬器件材料中的非線性、非平衡的量子輸運過程,是目前國內唯一一款擁有自主知識產權的基于第一性原理的輸運軟件。可預測材料的電流 - 電壓特性、電子透射幾率等眾多輸運性質。
迄今為止,Nanodcal 已成功應用于1維、2維、3維材料物性、分子電子器件、自旋電子器件、光電流器件、半導體電子器件設計等重要研究課題中,并將逐步推廣到更廣闊的電子輸運性質研究的領域。
本期將給大家介紹Nanodcal自旋器件1.3.2-1.3.3的內容。
1.3.2 鎳/黑磷/鎳隧道結的電輸運
1.3.2.1 計算模型
用戶可參考第一部分Device Studio建模的過程,自行搭建Ni(111)和Ni(100)MTJs。圖2-1給出了本章研究所采用的計算模型即Ni(111)/MBP/Ni(111)及Ni(100)/MBP/Ni(100) MTJs。這種結構是一個開放式雙電極體系,由三個部分組成,分別為左電極、中心區、右電極。Ni(111)/MBP/Ni(111)及Ni(100)/MBP/Ni(100)隧道結在x方向具有周期性,分別為4.316?和3.524?,y方向是輸運方向。圖2-28(e,f,g)分別為黑磷結構的俯視圖和側視圖, 晶格常數為a=4.58?,b=3.32?。MBP的a或b拉伸±6%后,與Ni/MBP/Ni隧道結的x方向的晶格常數相匹配。通過結構優化,得到Ni(111)、Ni(100)基底表面與黑磷的最佳距離分別為2.0?、1.95?。
1.3.2.2 輸運計算
PC代表平行結構,APC代表反平行結構。由于體系較大,推薦使用服務器進行計算。
1.3.2.2.1 自洽計算(平衡態下)
以平行結構Ni(111)/MBP/Ni(111)為例:
A.電極自洽計算-PC
(1)準備輸入文件:scf.input
;基組文件Ni_LDA-DZP.nad
,PNi_LDA-DZP.nad
%%What quantities should be calculatedcalculation.name = scf%Basic settingcalculation.occupationFunction.temperature = 100calculation.realspacegrids.E_cutoff = 80 Hartreecalculation.xcFunctional.Type = LDA_PZ81calculation.k_spacegrids.number = [ 100 1 1 ]'system.centralCellVectors = [[2.4918 0 0]' [0 4.316 0]' [0 0 25]']system.spinType = CollinearSpin%Iteration controlcalculation.SCF.monitoredVariableName = {'rhoMatrix','hMatrix','totalEnergy','bandEnergy','gridCharge','orbitalCharge','spinPolar'}calculation.SCF.convergenceCriteria = {1e-04,1e-04,[],[],[],[],[]}calculation.SCF.maximumSteps = 200calculation.SCF.mixMethod = Pulaycalculation.SCF.mixRate = 0.1calculation.SCF.mixingMode = Hcalculation.SCF.startingMode = H%calculation.SCF.donatorObject = NanodcalObject.mat%Basic setsystem.neutralAtomDataDirectory = '../'system.atomBlock = 10AtomType OrbitalType X Y Z SpinPolarizationNi LDA-DZP 1.86888322 3.95633418 14.51182073 0.3Ni LDA-DZP 0.62296107 1.79833372 14.51182073 0.3Ni LDA-DZP 1.86888322 2.51766721 12.47723838 0.3Ni LDA-DZP 0.62296107 0.35966675 12.47723838 0.3Ni LDA-DZP 1.86888322 1.07900023 10.44265604 0.3Ni LDA-DZP 0.62296107 3.23700070 10.44265604 0.3Ni LDA-DZP 1.86888322 3.95633418 40807369 0.3Ni LDA-DZP 0.62296107 1.79833372 40807369 0.3Ni LDA-DZP 1.86888322 2.51766721 6.37349134 0.3Ni LDA-DZP 0.62296107 0.35966675 6.37349134 0.3end
(2)自洽計算:連接服務器(請參見Device Studio的工具欄中help→help Topic→7.應用實例→7.1Nanodcal實例)在選擇服務器后,選中scf.input
右擊run。等待計算完畢后點擊JobManager所示界面中的Action下的下載按鈕下載NanodcalObject.mat
文件。
B.中心區的自洽計算-PC
(1)準備輸入文件:scf.input
;基組文件Ni_LDA-DZP.nad
,PNi_LDA-DZP.nad
%%What quantities should be calculatedcalculation.name = scf%Basic settingcalculation.occupationFunction.temperature = 100calculation.realspacegrids.E_cutoff = 80 Hartreecalculation.xcFunctional.Type = LDA_PZ81calculation.k_spacegrids.number = [ 1 1 1 ]'%Description of electrodesystem.numberOfLeads = 2system.typeOfLead1 = frontsystem.voltageOfLead1 = 0system.objectOfLead1 = ../FrontElectrode/NanodcalObject.matsystem.spinDirectionOfLead1 = [0 0 1] %電極1的自旋方向system.typeOfLead2 = backsystem.voltageOfLead2 = 0system.objectOfLead2 = ../BackElectrode/NanodcalObject.matsystem.spinDirectionOfLead2 = [0 0 1] %電極2的自旋方向%Contour integral%calculation.complexEcontour.lowestEnergyPoint = 1.5 Hartreecalculation.complexEcontour.numberOfPoints = 40calculation.realEcontour.interval = 0.0272114calculation.realEcontour.eta = 0.0272114system.centralCellVectors = [[46563 0 0]' [0 4.316 0]' [0 0 25]']system.spinType = CollinearSpin%Iteration controlcalculation.SCF.monitoredVariableName = {'rhoMatrix','hMatrix','totalEnergy','bandEnergy','gridCharge','orbitalCharge','spinPolar'}calculation.SCF.convergenceCriteria = {1e-04,1e-04,[],[],[],[],[]}calculation.SCF.maximumSteps = 200calculation.SCF.mixMethod = Pulaycalculation.SCF.mixRate = 0.1calculation.SCF.mixingMode = Hcalculation.SCF.startingMode = H%calculation.SCF.donatorObject = NanodcalObject.mat%Basic setsystem.neutralAtomDataDirectory = '../'system.atomBlock = 159AtomType OrbitalType X Y Z SpinPolarizationP LDA-DZP 11.07494990 3.60404468 162650771 0.3P LDA-DZP 14.38825099 3.60404468 162650771 0.3P LDA-DZP 17.70155016 3.60404515 162650771 0.3P LDA-DZP 21.01484934 3.60404515 162650771 0.3P LDA-DZP 24.32815043 3.60404515 162650771 0.3P LDA-DZP 27.64144961 3.60404515 162650771 0.3P LDA-DZP 30.95475070 3.60404515 162650771 0.3P LDA-DZP 34.26805178 3.60404563 162650771 0.3P LDA-DZP 37.58135287 3.60404563 162650771 0.3P LDA-DZP 11.07494990 2.89895606 16.46069045 0.3P LDA-DZP 14.38824908 2.89895606 16.46069045 0.3P LDA-DZP 17.70155016 2.89895654 16.46069045 0.3P LDA-DZP 21.01484934 2.89895654 16.46069045 0.3P LDA-DZP 24.32815043 2.89895654 16.46069045 0.3P LDA-DZP 27.64144961 2.89895558 16.46069045 0.3P LDA-DZP 30.95475070 2.89895558 16.46069045 0.3P LDA-DZP 34.26805178 2.89895606 16.46069045 0.3P LDA-DZP 37.58135287 2.89895606 16.46069045 0.3P LDA-DZP 9.41830031 1.41704440 16.46069045 0.3P LDA-DZP 12.73160044 1.41704440 16.46069045 0.3P LDA-DZP 16.04489962 1.41704488 16.46069045 0.3P LDA-DZP 19.35819880 1.41704488 16.46069045 0.3P LDA-DZP 22.67149989 1.41704488 16.46069045 0.3P LDA-DZP 25.98480097 1.41704488 16.46069045 0.3P LDA-DZP 29.29810015 1.41704488 16.46069045 0.3P LDA-DZP 32.61140124 1.41704488 16.46069045 0.3P LDA-DZP 35.92469851 1.41704535 16.46069045 0.3P LDA-DZP 39.23799960 1.41704535 16.46069045 0.3P LDA-DZP 9.41830031 0.71195674 162650771 0.3P LDA-DZP 12.73160044 0.71195698 162650771 0.3P LDA-DZP 16.04489962 0.71195698 162650771 0.3P LDA-DZP 19.35820071 0.71195698 162650771 0.3P LDA-DZP 22.67149989 0.71195722 162650771 0.3P LDA-DZP 25.98480097 0.71195531 162650771 0.3P LDA-DZP 29.29810015 0.71195555 162650771 0.3P LDA-DZP 32.61140124 0.71195555 162650771 0.3P LDA-DZP 35.92469851 0.71195555 162650771 0.3P LDA-DZP 39.23799960 0.71195579 162650771 0.3P LDA-DZP 25.98480097 0.71195531 162650866 0.3Ni LDA-DZP 46.78737049 3.95633418 40807369 0.3Ni LDA-DZP 46.78737049 3.95633418 14.51182073 0.3Ni LDA-DZP 44.29552619 3.95633418 40807369 0.3Ni LDA-DZP 44.29552619 3.95633418 14.51182073 0.3Ni LDA-DZP 36.81999330 3.95633418 40807369 0.3Ni LDA-DZP 41.80368189 3.95633418 40807369 0.3Ni LDA-DZP 39.31183760 3.95633418 40807369 0.3Ni LDA-DZP 36.81999330 3.95633418 14.51182073 0.3Ni LDA-DZP 41.80368189 3.95633418 14.51182073 0.3Ni LDA-DZP 39.31183760 3.95633418 14.51182073 0.3Ni LDA-DZP 34.32814900 3.95633418 40807369 0.3Ni LDA-DZP 34.32814900 3.95633418 14.51182073 0.3Ni LDA-DZP 45.54144834 3.23700070 10.44265604 0.3Ni LDA-DZP 403329264 3.23700070 10.44265604 0.3Ni LDA-DZP 43.04960404 3.23700070 10.44265604 0.3Ni LDA-DZP 306591545 3.23700070 10.44265604 0.3Ni LDA-DZP 40.55775975 3.23700070 10.44265604 0.3Ni LDA-DZP 35.57407115 3.23700070 10.44265604 0.3Ni LDA-DZP 46.78737049 2.51766721 6.37349134 0.3Ni LDA-DZP 46.78737049 2.51766721 12.47723838 0.3Ni LDA-DZP 44.29552619 2.51766721 6.37349134 0.3Ni LDA-DZP 44.29552619 2.51766721 12.47723838 0.3Ni LDA-DZP 39.31183760 2.51766721 6.37349134 0.3Ni LDA-DZP 36.81999330 2.51766721 6.37349134 0.3Ni LDA-DZP 41.80368189 2.51766721 6.37349134 0.3Ni LDA-DZP 39.31183760 2.51766721 12.47723838 0.3Ni LDA-DZP 36.81999330 2.51766721 12.47723838 0.3Ni LDA-DZP 41.80368189 2.51766721 12.47723838 0.3Ni LDA-DZP 34.32814900 2.51766721 6.37349134 0.3Ni LDA-DZP 34.32814900 2.51766721 12.47723838 0.3Ni LDA-DZP 403329264 1.79833372 40807369 0.3Ni LDA-DZP 403329264 1.79833372 14.51182073 0.3Ni LDA-DZP 45.54144834 1.79833372 40807369 0.3Ni LDA-DZP 43.04960404 1.79833372 40807369 0.3Ni LDA-DZP 43.04960404 1.79833372 14.51182073 0.3Ni LDA-DZP 45.54144834 1.79833372 14.51182073 0.3Ni LDA-DZP 306591545 1.79833372 40807369 0.3Ni LDA-DZP 40.55775975 1.79833372 40807369 0.3Ni LDA-DZP 306591545 1.79833372 14.51182073 0.3Ni LDA-DZP 40.55775975 1.79833372 14.51182073 0.3Ni LDA-DZP 35.57407115 1.79833372 40807369 0.3Ni LDA-DZP 35.57407115 1.79833372 14.51182073 0.3Ni LDA-DZP 46.78737049 1.07900023 10.44265604 0.3Ni LDA-DZP 44.29552619 1.07900023 10.44265604 0.3Ni LDA-DZP 41.80368189 1.07900023 10.44265604 0.3Ni LDA-DZP 39.31183760 1.07900023 10.44265604 0.3Ni LDA-DZP 36.81999330 1.07900023 10.44265604 0.3Ni LDA-DZP 34.32814900 1.07900023 10.44265604 0.3Ni LDA-DZP 403329264 0.35966675 6.37349134 0.3Ni LDA-DZP 403329264 0.35966675 12.47723838 0.3Ni LDA-DZP 45.54144834 0.35966675 6.37349134 0.3Ni LDA-DZP 45.54144834 0.35966675 12.47723838 0.3Ni LDA-DZP 43.04960404 0.35966675 6.37349134 0.3Ni LDA-DZP 43.04960404 0.35966675 12.47723838 0.3Ni LDA-DZP 40.55775975 0.35966675 6.37349134 0.3Ni LDA-DZP 40.55775975 0.35966675 12.47723838 0.3Ni LDA-DZP 306591545 0.35966675 6.37349134 0.3Ni LDA-DZP 306591545 0.35966675 12.47723838 0.3Ni LDA-DZP 35.57407115 0.35966675 6.37349134 0.3Ni LDA-DZP 35.57407115 0.35966675 12.47723838 0.3Ni LDA-DZP 11.83630471 3.95633418 14.51182073 0.3Ni LDA-DZP 6.85261611 3.95633418 14.51182073 0.3Ni LDA-DZP 1.86892752 3.95633418 14.51182073 0.3Ni LDA-DZP 14.32814900 3.95633418 14.51182073 0.3Ni LDA-DZP 9.34446041 3.95633418 14.51182073 0.3Ni LDA-DZP 4.36077182 3.95633418 14.51182073 0.3Ni LDA-DZP 10.59038256 1.79833372 14.51182073 0.3Ni LDA-DZP 5.60669396 1.79833372 14.51182073 0.3Ni LDA-DZP 0.62300537 1.79833372 14.51182073 0.3Ni LDA-DZP 13.08222686 1.79833372 14.51182073 0.3Ni LDA-DZP 09853826 1.79833372 14.51182073 0.3Ni LDA-DZP 3.11484967 1.79833372 14.51182073 0.3Ni LDA-DZP 14.32814900 2.51766721 12.47723838 0.3Ni LDA-DZP 9.34446041 2.51766721 12.47723838 0.3Ni LDA-DZP 4.36077182 2.51766721 12.47723838 0.3Ni LDA-DZP 11.83630471 2.51766721 12.47723838 0.3Ni LDA-DZP 6.85261611 2.51766721 12.47723838 0.3Ni LDA-DZP 1.86892752 2.51766721 12.47723838 0.3Ni LDA-DZP 13.08222686 0.35966675 12.47723838 0.3Ni LDA-DZP 09853826 0.35966675 12.47723838 0.3Ni LDA-DZP 3.11484967 0.35966675 12.47723838 0.3Ni LDA-DZP 10.59038256 0.35966675 12.47723838 0.3Ni LDA-DZP 5.60669396 0.35966675 12.47723838 0.3Ni LDA-DZP 0.62300537 0.35966675 12.47723838 0.3Ni LDA-DZP 11.83630471 1.07900023 10.44265604 0.3Ni LDA-DZP 6.85261611 1.07900023 10.44265604 0.3Ni LDA-DZP 1.86892752 1.07900023 10.44265604 0.3Ni LDA-DZP 14.32814900 1.07900023 10.44265604 0.3Ni LDA-DZP 9.34446041 1.07900023 10.44265604 0.3Ni LDA-DZP 4.36077182 1.07900023 10.44265604 0.3Ni LDA-DZP 13.08222686 3.23700070 10.44265604 0.3Ni LDA-DZP 09853826 3.23700070 10.44265604 0.3Ni LDA-DZP 3.11484967 3.23700070 10.44265604 0.3Ni LDA-DZP 10.59038256 3.23700070 10.44265604 0.3Ni LDA-DZP 5.60669396 3.23700070 10.44265604 0.3Ni LDA-DZP 0.62300537 3.23700070 10.44265604 0.3Ni LDA-DZP 11.83630471 3.95633418 40807369 0.3Ni LDA-DZP 6.85261611 3.95633418 40807369 0.3Ni LDA-DZP 1.86892752 3.95633418 40807369 0.3Ni LDA-DZP 14.32814900 3.95633418 40807369 0.3Ni LDA-DZP 9.34446041 3.95633418 40807369 0.3Ni LDA-DZP 4.36077182 3.95633418 40807369 0.3Ni LDA-DZP 10.59038256 1.79833372 40807369 0.3Ni LDA-DZP 5.60669396 1.79833372 40807369 0.3Ni LDA-DZP 0.62300537 1.79833372 40807369 0.3Ni LDA-DZP 13.08222686 1.79833372 40807369 0.3Ni LDA-DZP 09853826 1.79833372 40807369 0.3Ni LDA-DZP 3.11484967 1.79833372 40807369 0.3Ni LDA-DZP 14.32814900 2.51766721 6.37349134 0.3Ni LDA-DZP 9.34446041 2.51766721 6.37349134 0.3Ni LDA-DZP 4.36077182 2.51766721 6.37349134 0.3Ni LDA-DZP 11.83630471 2.51766721 6.37349134 0.3Ni LDA-DZP 6.85261611 2.51766721 6.37349134 0.3Ni LDA-DZP 1.86892752 2.51766721 6.37349134 0.3Ni LDA-DZP 13.08222686 0.35966675 6.37349134 0.3Ni LDA-DZP 09853826 0.35966675 6.37349134 0.3Ni LDA-DZP 3.11484967 0.35966675 6.37349134 0.3Ni LDA-DZP 10.59038256 0.35966675 6.37349134 0.3Ni LDA-DZP 5.60669396 0.35966675 6.37349134 0.3Ni LDA-DZP 0.62300537 0.35966675 6.37349134 0.3end
(2)自洽計算:連接服務器(請參見Device Studio的工具欄中help→help Topic→7.應用實例→7.1Nanodcal實例)在選擇服務器后,選中scf.input
右擊run。等待計算完畢后點擊JobManager所示界面中的Action下的下載按鈕下載NanodcalObject.mat
文件。
以反平行結構Ni(111)/MBP/Ni(111)為例:
C.電極的自洽計算-APC
與平行結構所有的輸入文件一致
D.中心區的自洽計算-APC
(1)準備輸入文件:scf.input
;基組文件Ni_LDA-DZP.nad
,PNi_LDA-DZP.nad
其中scf.input
與平行結構的區別在于以下參數,其他參數一致。
%Description of electrodesystem.numberOfLeads = 2system.typeOfLead1 = frontsystem.voltageOfLead1 = 0system.objectOfLead1 = ../FrontElectrode/NanodcalObject.matsystem.spinDirectionOfLead1 = [0 0 1] %電極1的自旋方向system.typeOfLead2 = backsystem.voltageOfLead2 = 0system.objectOfLead2 = ../BackElectrode/NanodcalObject.matsystem.spinDirectionOfLead2 = [0 0 -1] %電極2的自旋方向
自洽計算后,我們就可以計算體系的各種物理性質。在本章中,我們將講解如何計算分析電子透射譜、IV曲線、態密度、隧穿磁阻、自旋注入率。
1.3.2.2.2 非平衡態下的自洽計算
本節對Ni(111)/MBP/Ni(111)體系,進行了偏壓0~100mV下的自洽計算。
(1)我們以偏壓0.01V為例,準備輸入文件 與本節前面平衡態下的自洽示例不同的是中心區自洽計算輸入文scf.input
:
system.voltageOfLead1 = 0.0 system.voltageOfLead2 = 0.0 變為 system.voltageOfLead1 = 0.005 system.voltageOfLead2 = -0.005 其他不變。
(2)自洽計算
(3)依次對偏壓0.02V,0.03V,0.04V,0.05V,0.06V,0.07V,0.08V,0.09V,0.1V的體系進行自洽計算。
1.3.2.2.3 電子透射譜計算
對平衡態的體系進行電子透射譜計算。以平行結構為例:
(1)準備輸入文件transmission.input
,Simulator→Nanodcal→Analysis→Transmission→->→Generate file。
system.object = NanodcalObject.matcalculation.name = transmissioncalculation.transmission.kSpaceGridNumber = [ 300 1 1 ]'calculation.transmission.energyPoints = -5:0.025:5calculation.transmission.plot = truecalculation.control.xml = true
(2)自洽計算:連接服務器(請參見Device Studio的工具欄中help→help Topic→7.應用實例→7.1Nanodcal實例)在選擇服務器后,選中scf.input
右擊run。等待計算完畢后點擊JobManager所示界面中的Action下的下載按鈕下載Transmission.mat
、Transmission.xml
、Transmission.fig
、CalculatedResults.mat
和log.txt
文件。查看Transmission.mat
文件可得出
>> load –mat Transmission.mat >> data.averagedTransmissionCoefficients ans = 0.0021 0.0111
對于反平行結構:計算的transmission.input
和過程同平行結構 查看Transmission.mat
文件可得出
>> load –mat Transmission.mat >> data.averagedTransmissionCoefficients ans = 0.0041 0.0041
說明:由于Ni(111)/MBP/Ni(111)結構具有對稱性,所以反平行結構的自旋向上和向下的電子透射譜系數相同。
1.3.2.2.4 投影態密度計算
以平行結構Ni(111)/MBP/Ni(111)為例:對平衡態的體系進行態密度計算。
(1)準備輸入文件densityOfStates.input
,Simulator→Nanodcal→Analysis→DensityOfStates→->→Generate file。
(2)態密度計算(投影到原子):在Matlab界面,命令窗口輸入:
system.object = NanodcalObject.matcalculation.name = densityOfStatescalculation.densityOfStates.kSpaceGridNumber = [ 8 1 1 ]'calculation.densityOfStates.numberOfEnergyPoints = 401calculation.densityOfStates.energyRange = [-3 , 3]calculation.densityOfStates.whatProjected = 'Atom'calculation.densityOfStates.plot = truecalculation.control.xml = true
(2)自洽計算:連接服務器(請參見Device Studio的工具欄中help→help Topic→7.應用實例→7.1Nanodcal實例)在選擇服務器后,選中scf.input
右擊run。等待計算完畢后點擊JobManager所示界面中的Action下的下載按鈕下載DensityOfStates.mat
、DensityOfStates.xml
、DensityOfStates.fig
和log.txt
文件。
1.3.2.2.5 電流計算
對非平衡態的體系進行電流計算。我們以偏壓0.01V為例:
(1)偏壓Vbias被定義為VL-VR。對器件施加0.01 V偏壓,中心區的輸入文件scf.input
改變如下,其他參數不變。
%Description of electrodesystem.numberOfLeads = 2system.typeOfLead1 = frontsystem.voltageOfLead1 = 0.005system.objectOfLead1 = ../FrontElectrode/NanodcalObject.matsystem.spinDirectionOfLead1 = [0 0 1] %電極1的自旋方向system.typeOfLead2 = backsystem.voltageOfLead2 = -0.005system.objectOfLead2 = ../BackElectrode/NanodcalObject.matsystem.spinDirectionOfLead2 = [0 0 -1] %電極2的自旋方向
-
(2)建立nanodcal計算IV曲線的輸入文件,如下:
-
Simulator→Nanodcal→Analysis→IVcurve→->→Generate file。
參數默認,產生能帶計算的輸入文件IVcurve.input
,同樣,右擊打開open with,可查看,如下:
calculation.name = ivccalculation.control.temporaryDirectory = ./calculation.IVCurve.systemObjectFiles = ../NanodcalObject.matcalculation.IVCurve.kSpaceGridNumber = [300 1 1]'calculation.control.xml = true
(3)IV曲線計算:與自洽計算步驟一樣,選中IVcurve.input
右擊run。等待計算完畢后點擊Job Manager所示界面中的Action下的下載按鈕下載CurrentVoltageCurves.mat
、CurrentVoltageCurves.fig
、CurrentVoltageCurves.xml
文件。
(4)查看數據,如下:
>> load –mat CurrentVoltageCurves.mat >> data V1: 0.0050 I1: 3.9405e-09 %電流值 I1_spinDecomposed: [2x1 double] V2: -0.0050 I2: -3.9405e-09 I2_spinDecomposed: [2x1 double] conductance: [1x1 struct] description: [1x1040 char] >> data.I1_spinDecomposed ans = 1.0e-08 * 0.0814 %自旋向上的電流值 0.3126 %自旋向下的電流值
(5)依次對偏壓0.02V,0.03V,0.04V,0.05V,0.06V,0.07V,0.08V,0.09V,0.1V的體系進行電流計算。
1.3.1.2.3 計算結果和分析
(1)作圖和分析:I-V曲線和TMR、SIE (根據3.2.2 輸運計算的結果,進行數據繪圖)
I-V曲線 :
偏壓0V,0.01V,0.02V,0.03V,0.04V,0.05V,0.06V,0.07V,0.08V,0.09V,0.1V的體系的電流數據依次取值,得到圖1(a),(b),(d),(e)。其中 I_total=I_up+I_down 。
TMR和SIE曲線:
隧穿磁阻(Tunnel magnetoresistance),簡稱:TMR,我們將其定義為:TMR=(I_PC-I_APC)/I_APC ,其中I_PC、I_APC分別代表PC和APC結構的自旋極化電流;自旋極化率η=|(I_↑-I_↓)/(I_↑+I_↓ )|,I_↑和I_↓分別表示自旋向上和自旋向下的自旋極化電流。在平衡態時,即不加偏壓時,TMR和η由費米能級處的電子透射譜系數計算得到。以上均適用于Ni(100)/MBP/Ni(100)體系。經過一系列計算和數據處理,得到如下圖:
圖 1-29:
圖1-29 左側圖(a)、(b)、(c)分別代表 Ni(111MBP/Ni(111) MTJs PC結構的I-V曲線;APC結構的I-V曲線;隨偏壓變化的TMR和SIE(插圖)。右側圖(d)、(e)、(f)分別代表 Ni(100)/MBP/Ni(100) MTJs PC結構的I-V曲線;APC結構的I-V曲線;隨偏壓變化的TMR和SIE(插圖)。
注意:Ni(100)/MBP/Ni(100) MTJs具有持續穩定的TMR值
(2)結果分析:
對于Ni(111)/MBP/Ni(111) MTJs,電流沿著MBP的y (zigzag)方向;對于Ni(100)/MBP/Ni(100) MTJs,自旋電流沿著MBP的x (armchair)方向,見圖1-1(e,f,g)所示。圖1-2(a,b)和(d,e)分別給出了偏壓0~100mV下Ni(111)/MBP/Ni(111)與Ni(100)/MBP/Ni(100)的自旋極化電流。對于Ni(111)和Ni(100)系統,在偏壓0-70mV時,總電流I_(PC,APC)隨著偏壓線性增加;當偏壓大于70mV時,隨著偏壓增加,I_(PC,APC)呈現非線性的快速增加。圖2-2(a,b)表明Ni(111)系統的PC和APC結構的自旋極化電流I_↓總是大于I_↑。但對于Ni(100)系統,PC結構的自旋極化電流I_↓>I_↑,如圖2-2(d);APC結構的自旋極化電流I_↓
(1)作圖和分析:PDOS
(根據3.2.2 輸運計算中投影態密度的結果,進行數據繪圖)得到PDOS圖如下:
圖 1-30:
圖1-30 平衡態下:Ni(111)/MBP/Ni(111) MTJs平行結構的投影態密度(PDOS) 橫坐標為輸運方向y(?),縱坐標為能量Energy(eV),右上方為豎直方向的條形顏色刻度,藍色虛線為費米面。
(2)結果分析:
由圖1-30知,在沿輸運方向大約10?至30?的范圍內,深藍色區域為MBP的能隙禁區,表明此區域MBP形成輸運勢壘;從物理圖像上看,左電極中自旋向上的電子為少數自旋態電子(態密度小),左電極中自旋向下的電子為多數自旋態電子(態密度大)。當鎳電極的磁化方向平行時,即PC結構,則一個電極中多數自旋子帶的電子將進入另一個電極中的多數自旋子帶的空態,而少數自旋子帶的電子也從這個電極進入另一個電極的少數自旋子帶的空態。可以理解,當磁化取向平行排列時,電極中的多數自旋子帶與一個高密度的空態相遇,故電阻低。磁化平行排列電阻小,形成低阻態;相反,磁化反平行排列電阻高,形成高阻態??傊?,電子的輸運一方面依賴于MBP勢壘的隧穿過程,另一方面又與兩端磁性金屬的磁化相對取向有關。
(1)作圖和分析:某一能量范圍下的電子透射譜(根據2.2.2 輸運計算中電子透射譜的結果,進行提取數據并繪圖)
圖 1-31:
圖1-31 平衡態下:PC和APC結構的電子透射譜,費米能級在0處 (a)為Ni(111)/MBP/Ni(111) MTJ;(b)為Ni(100)/MBP/Ni(100) MTJ
(2)結果分析:
為了進一步深入理解TMR和SIE,我們分析了平衡態下的電子透射譜。圖1-31(a)和(b)分別為平衡態下,Ni(111)/MBP/Ni(111)及Ni(100)/MBP/Ni(100) MTJs的PC和APC結構的電子透射譜。由于這兩個系統的結構具有對稱性,因此APC結構的自旋向上和自旋向下的電子透射譜系數是相等的,所以在圖1-31(a)和(b)中APC結構的電子透射譜系數只顯示了一條曲線。對于PC結構,分別畫出了自旋向上和自旋向下的電子透射譜系數。從圖1-31中可看出,費米能級處的自旋向下的電子要比自旋向上的電子對透射譜系數貢獻的多,從而導致平衡態下,兩種系統具有相對較大的TMR和SIE值(PC結構), 如圖1-31(c)和(f))。由于系統結構具有對稱性,所以在平衡態下兩個系統APC結構的SIE為0。圖2-31的電子透射譜的分析方法與圖1-31PDOS的分析方法基本一致, 如下:對于PC結構,MTJs的鎳電極中自旋向下的電子態密度大,故自旋向下通道的電子透射譜系數大。對于APC結構,由于系統結構的對稱性,MTJs的鎳電極中自旋向上和自旋向下的電子態密度相同,故自旋向上和自旋向下通道的電子透射譜系數相等。
本章采用NEGF-DFT的計算方法,研究了鎳/黑磷/鎳隧道結的非平衡態的電輸運性質。我們計算了外置偏壓下的TMR、SIE、自旋極化電流、電荷電流、電子透射譜系數等。研究結果發現:(1) 在0~70mV偏壓范圍內,Ni(100)/MBP/Ni(100) MTJs具有穩定的高TMR和高SIE值,其中TMR≈40% 。對于PC結構,SIE≈60%。(2) Ni(100)/MBP/Ni(100)比Ni(111)/MBP/Ni(111)結構具有更好的自旋極化輸運特性,這表明隧道結的界面結構對體系的TMR、SIE有重要影響??傊?,Ni(100)/MBP/Ni(100) 比Ni(111)/MBP/Ni(111) 結構更適合應用于自旋電子器件。
審核編輯 :李倩
1.3.3 總結
-
電極
+關注
關注
5文章
821瀏覽量
27249 -
模擬器件
+關注
關注
2文章
106瀏覽量
23223
原文標題:產品教程|Nanodcal自旋器件(鎳/黑磷/鎳隧道結的電輸運02)
文章出處:【微信號:hzwtech,微信公眾號:鴻之微】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論