色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習刷SOTA的一堆trick

深度學習自然語言處理 ? 來源:包包算法筆記 ? 作者:包包算法筆記 ? 2022-09-07 15:13 ? 次閱讀

一般通用的trick都被寫進論文和代碼庫里了

像優秀的優化器,學習率調度方法,數據增強,dropout,初始化,BN,LN,確實是調參大師的寶貴經驗,大家平常用的也很多。

這里主要有幾個,我們分成三部分,穩定有用型trick,場景受限型trick,性能加速型trick。

穩定有用型trick

0.模型融合

懂得都懂,打比賽必備,做文章沒卵用的人人皆知trick,早年模型小的時候還用stacking,直接概率融合效果也不錯。

  1. 對抗訓練

對抗訓練就是在輸入的層次增加擾動,根據擾動產生的樣本,來做一次反向傳播。以FGM為例,在NLP上,擾動作用于embedding層。給個即插即用代碼片段吧,引用了知乎id:Nicolas的代碼,寫的不錯,帶著看原理很容易就明白了。

#初始化
fgm=FGM(model)
forbatch_input,batch_labelindata:
#正常訓練
loss=model(batch_input,batch_label)
loss.backward()#反向傳播,得到正常的grad
#對抗訓練
fgm.attack()#在embedding上添加對抗擾動
loss_adv=model(batch_input,batch_label)
loss_adv.backward()#反向傳播,并在正常的grad基礎上,累加對抗訓練的梯度
fgm.restore()#恢復embedding參數
#梯度下降,更新參數
optimizer.step()
model.zero_grad()

具體FGM的實現

importtorch
classFGM():
def__init__(self,model):
self.model=model
self.backup={}

defattack(self,epsilon=1.,emb_name='emb.'):
#emb_name這個參數要換成你模型中embedding的參數名
forname,paraminself.model.named_parameters():
ifparam.requires_gradandemb_nameinname:
self.backup[name]=param.data.clone()
norm=torch.norm(param.grad)
ifnorm!=0andnottorch.isnan(norm):
r_at=epsilon*param.grad/norm
param.data.add_(r_at)

defrestore(self,emb_name='emb.'):
#emb_name這個參數要換成你模型中embedding的參數名
forname,paraminself.model.named_parameters():
ifparam.requires_gradandemb_nameinname:
assertnameinself.backup
param.data=self.backup[name]
self.backup={}

2.EMA/SWA

移動平均,保存歷史的一份參數,在一定訓練階段后,拿歷史的參數給目前學習的參數做一次平滑。這個東西,我之前在earhian的祖傳代碼里看到的。他喜歡這東西+衰減學習率。確實每次都有用。

#初始化
ema=EMA(model,0.999)
ema.register()

#訓練過程中,更新完參數后,同步updateshadowweights
deftrain():
optimizer.step()
ema.update()

# eval前,apply shadow weights;eval之后,恢復原來模型的參數
defevaluate():
ema.apply_shadow()
#evaluate
ema.restore()

具體EMA實現,即插即用:

classEMA():
def__init__(self,model,decay):
self.model=model
self.decay=decay
self.shadow={}
self.backup={}

defregister(self):
forname,paraminself.model.named_parameters():
ifparam.requires_grad:
self.shadow[name]=param.data.clone()

defupdate(self):
forname,paraminself.model.named_parameters():
ifparam.requires_grad:
assertnameinself.shadow
new_average=(1.0-self.decay)*param.data+self.decay*self.shadow[name]
self.shadow[name]=new_average.clone()

defapply_shadow(self):
forname,paraminself.model.named_parameters():
ifparam.requires_grad:
assertnameinself.shadow
self.backup[name]=param.data
param.data=self.shadow[name]

defrestore(self):
forname,paraminself.model.named_parameters():
ifparam.requires_grad:
assertnameinself.backup
param.data=self.backup[name]
self.backup={}

這兩個方法的問題就是跑起來會變慢,并且提分點都在前分位,不過可以是即插即用類型

3.Rdrop等對比學習方法

有點用,不會變差,實現起來也很簡單

#訓練過程上下文
ce=CrossEntropyLoss(reduction='none')
kld=nn.KLDivLoss(reduction='none')
logits1=model(input)
logits2=model(input)
#下面是訓練過程中對比學習的核心實現!!!!
kl_weight=0.5#對比loss權重
ce_loss=(ce(logits1,target)+ce(logits2,target))/2
kl_1=kld(F.log_softmax(logits1,dim=-1),F.softmax(logits2,dim=-1)).sum(-1)
kl_2=kld(F.log_softmax(logits2,dim=-1),F.softmax(logits1,dim=-1)).sum(-1)
loss=ce_loss+kl_weight*(kl_1+kl_2)/2

大家都知道,在訓練階段。dropout是開啟的,你多次推斷dropout是有隨機性的。

模型如果魯棒的話,你同一個樣本,即使推斷時候,開著dropout,結果也應該差不多。好了,那么它的原理也呼之欲出了。用一張圖來形容就是:

5d5ce4a6-2e61-11ed-ba43-dac502259ad0.gif

隨便你怎么踹(dropout),本AI穩如老狗。

KLD loss是衡量兩個分布的距離的,所以說他就是在原始的loss上,加了一個loss,這個loss刻畫了模型經過兩次推斷,抵抗因dropout造成擾動的能力。

4.TTA

這個一句話說明白,測試時候構造靠譜的數據增強,簡單一點的數據增強方式比較好,然后把預測結果加起來算個平均。

5.偽標簽

代碼和原理實現也不難,代價也是訓練變慢,畢竟多了一些數據一句話說明白,就是用訓練的模型,把測試數據,或者沒有標簽的數據,推斷一遍。構成偽標簽,然后拿回去訓練。注意不要leak。

聽起來挺離譜的,我們把步驟用偽代碼實現一下。

model1.fit(train_set,label,val=validation_set)#step1
pseudo_label=model.pridict(test_set)#step2
new_label=concat(pseudo_label,label)#step3
new_train_set=concat(test_set,train_set)#step3
model2.fit(new_train_set,new_label,val=validation_set)#step4
final_predict=model2.predict(test_set)#step5

用網上一個經典的圖來說就是。

5e04879c-2e61-11ed-ba43-dac502259ad0.jpg

6.神經網絡自動填空值

表數據在NN上的trick,快被tabnet 集大成了,這個方法是把缺失值的位置之外的地方mask,本身當成1這樣可以學習出一個參數,再加回這個feature的輸入上。可以看看他文章的實現。

場景受限型trick

有用但場景受限或者不穩定

1.PET或者其他prompt的方案

在一些特定場景上有用,比如zeroshot,或者小樣本的監督訓練,在數據量充足情況下拿來做模型融合有點用,單模型不一定干的過硬懟。

2.Focalloss

偶爾有用,大部分時候用處不大,看指標,在一些對長尾,和稀有類別特別關注的任務和指標上有所作為。

3.mixup/cutmix等數據增強

挑數據,大部分數據和任務用處不大,局部特征比較敏感的任務有用,比如音頻分類等

4人臉等一些改動softmax的方式

在數據量偏少的時候有用,在工業界數據量巨大的情況下用處不大

5.領域后預訓練

把自己的數據集,在Bert base上用MLM任務再過一遍,代價也是變慢,得益于huggingface可用性極高的代碼,實現起來也非常簡單,適用于和預訓練預料差別比較大的一些場景,比如中藥,ai4code等,在一些普通的新聞文本分類數據集上用處不大。

6.分類變檢索

這算是小樣本分類問題的標準解法了,類似于人臉領域的baseline,在這上面有很多圍繞類間可分,類內聚集的loss改進,像aa-softmax,arcface,am-softmax等

在文本分類,圖像分類上效果都不錯。

突破性能型trick

1.混合精度訓練

AMP即插即用,立竿見影。

2.梯度累積

在優化器更新參數之前,用相同的模型參數進行幾次前后向傳播。在每次反向傳播時計算的梯度被累積(加總)。不過這種方法會影響BN的計算,可以用來突破batchsize上限。

3.Queue或者memery bank

可以讓batchsize突破天際,可以參考MoCo用來做對比學習的那個實現方式

4.非必要不同步

多卡ddp訓練的時候,用到梯度累積時,可以使用no_sync減少不必要的梯度同步,加快速度


審核編輯 :李倩


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 代碼
    +關注

    關注

    30

    文章

    4823

    瀏覽量

    68904
  • 深度學習
    +關注

    關注

    73

    文章

    5512

    瀏覽量

    121421
  • nlp
    nlp
    +關注

    關注

    1

    文章

    489

    瀏覽量

    22074

原文標題:深度學習刷SOTA的一堆trick

文章出處:【微信號:zenRRan,微信公眾號:深度學習自然語言處理】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    ADS1299重新燒錄后就是一堆雜波,造成這樣的原因般是什么?

    關于ADS1299的疑惑,我的程序燒入到自己做的板卡,有時候就能正常采樣,無論是外部信號發生器的波形,還是內部測試方波,但有時候重新燒錄后(程序字未動)就是一堆雜波。請問造成這樣的原因般是什么
    發表于 12-19 08:48

    NPU在深度學習中的應用

    隨著人工智能技術的飛速發展,深度學習作為其核心驅動力之,已經在眾多領域展現出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為深度
    的頭像 發表于 11-14 15:17 ?795次閱讀

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是些GPU深度學習應用案例: 、圖像識別 圖像識別是
    的頭像 發表于 10-27 11:13 ?462次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 深度學習是AI大模型的基礎 技術支撐 :
    的頭像 發表于 10-23 15:25 ?1101次閱讀

    深度學習中的時間序列分類方法

    時間序列分類(Time Series Classification, TSC)是機器學習深度學習領域的重要任務之,廣泛應用于人體活動識別、系統監測、金融預測、醫療診斷等多個領域。隨
    的頭像 發表于 07-09 15:54 ?1122次閱讀

    深度學習中的無監督學習方法綜述

    深度學習作為機器學習領域的個重要分支,近年來在多個領域取得了顯著的成果,特別是在圖像識別、語音識別、自然語言處理等領域。然而,深度
    的頭像 發表于 07-09 10:50 ?887次閱讀

    深度學習與nlp的區別在哪

    深度學習和自然語言處理(NLP)是計算機科學領域中兩個非常重要的研究方向。它們之間既有聯系,也有區別。本文將介紹深度學習與NLP的區別。 深度
    的頭像 發表于 07-05 09:47 ?1024次閱讀

    深度學習中的模型權重

    深度學習充滿無限可能性的領域中,模型權重(Weights)作為其核心組成部分,扮演著至關重要的角色。它們不僅是模型學習的基石,更是模型智能的源泉。本文將從模型權重的定義、作用、優
    的頭像 發表于 07-04 11:49 ?1775次閱讀

    深度學習常用的Python庫

    深度學習作為人工智能的個重要分支,通過模擬人類大腦中的神經網絡來解決復雜問題。Python作為種流行的編程語言,憑借其簡潔的語法和豐富的庫支持,成為了
    的頭像 發表于 07-03 16:04 ?695次閱讀

    深度學習與傳統機器學習的對比

    在人工智能的浪潮中,機器學習深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管它們都屬于機器學習的范疇,但
    的頭像 發表于 07-01 11:40 ?1510次閱讀

    NB81是否支持OneNet SOTA功能?應該如何激活SOTA

    NB81是否支持OneNet SOTA功能? 可以支持,應該如何激活SOTA
    發表于 06-04 06:14

    旋變位置不變的情況下,當使能SOTA功能與關閉SOTA功能時,APP中DSADC采樣得到的旋變sin和cos兩者值不樣,為什么?

    旋變位置不變的情況下,當使能SOTA功能與關閉SOTA功能時,APP中DSADC采樣得到的旋變sin和cos兩者值不樣,用示波器采的輸入到MCU端的差分電壓是樣的,難道是
    發表于 05-17 08:13

    深度解析深度學習下的語義SLAM

    隨著深度學習技術的興起,計算機視覺的許多傳統領域都取得了突破性進展,例如目標的檢測、識別和分類等領域。近年來,研究人員開始在視覺SLAM算法中引入深度學習技術,使得
    發表于 04-23 17:18 ?1352次閱讀
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>學習</b>下的語義SLAM

    為什么深度學習的效果更好?

    導讀深度學習是機器學習個子集,已成為人工智能領域的項變革性技術,在從計算機視覺、自然語言處理到自動駕駛汽車等廣泛的應用中取得了顯著的成
    的頭像 發表于 03-09 08:26 ?670次閱讀
    為什么<b class='flag-5'>深度</b><b class='flag-5'>學習</b>的效果更好?

    .sct文件自動生成了一堆代碼,并且有warning是什么原因導致的?

    .sct文件自動生成了一堆代碼,并且有warning,手動改回去后編譯,警告消失,重新編譯又自動生成代碼并且伴隨警告,請問是什么原因造成的,需要如何解決?
    發表于 03-07 06:39
    主站蜘蛛池模板: 日韩人妻无码专区一本二本 | 精品一二三区久久AAA片 | 日韩欧美精品有码在线播放免费 | 亚洲视频999 | 成人小视频在线观看免费 | 久久www99re在线播放 | 老师我好爽再深一点老师好涨 | 奶水四溅54p | 看全色黄大色大片免费久黄久 | 国产99精品视频 | 久久久欧美国产精品人妻噜噜 | 区产品乱码芒果精品P站在线 | 午夜宅宅伦电影网中文字幕 | 日本高清在线一区二区三区 | 回复术士勇者免费观看全集 | 被黑人群jian又粗又大H | 日本日本熟妇中文在线视频 | 小小水蜜桃3视频在线观看 小向美奈子厨房magnet | 99久久免费精品国产 | 国产成人精品123区免费视频 | 99久久精品6在线播放 | 亚洲中文字幕永久在线全国 | 岛国片在线看 | sao虎影院桃红视频在线观看 | 男人免费网站 | 无限资源在线完整高清观看1 | 日本精品久久久久中文字幕 1 | 日产国产欧美韩国在线 | 父亲猜女儿在线观看 | 国产乱国产乱老熟300部视频 | 国内精品久久久久久西瓜色吧 | 色综合久久五月 | 四虎影视国产精品亚洲精品hd | 精品国产手机视频在在线 | 欧洲精品一区二区不卡观看 | 久久综合中文字幕佐佐木希 | 国产成人高清亚洲一区app | 99精品视频在线观看 | 强奷乱码中文字幕熟女免费 | 国产精品VIDEOSSEX久久发布 | 抽插H浊水H嫩B父皇 虫族bl文全肉高h |