色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

【地平線旭日X3派試用體驗】X3派開箱及開發環境搭建

開發板試用精選 ? 來源:開發板試用 ? 作者:電子發燒友論壇 ? 2022-10-21 10:32 ? 次閱讀
本文來源電子發燒友社區,作者:yjp, 帖子地址:https://bbs.elecfans.com/jishu_2303179_1_1.html


地平線旭日X3派開發板是我見過,AI計算算力最強,開源程度最深,AI算法集成度最高的開發板,再此表示感謝。

環境安裝在進行AI算法開發之前請參考X3派用戶手冊完成系統安裝及配置,此時X3派上已默認安裝好了地平線Python版本AI推理引擎(hobot_dnn)及其配套依賴環境。hobot_dnn提供了Model、pyDNNTensor、TensorProperties三個類和load接口。您可通過如下方式獲取hobot_dnn的基本信息
-------------------------------------------------------------------------------------------------------------------------------
python3
>>> from hobot_dnn import pyeasy_dnn as dnn
>>> dir(dnn)
['Model', 'TensorProperties', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', 'load', 'pyDNNTensor']
-------------------------------------------------------------------------------------------------------------------------------
AI推理引擎的更新可參考如下方式(出于系統安全、穩定性的考慮,建議統一通過APT命令更新X3派板級開發包):
-------------------------------------------------------------------------------------------------------------------------------
#更新package列表
sudo apt update
#升級所有已安裝的軟件包到最新版
sudo apt full-upgrade
#清除緩存文件(非必須)
sudo apt clean
#重啟設備
sudo reboot
-------------------------------------------------------------------------------------------------------------------------------
1 推理接口介紹1.1 ModelAI算法模型類,描述模型的名稱,輸入、輸出數據屬性信息,forward 方法用來完成算法的推理。
-------------------------------------------------------------------------------------------------------------------------------
class hobot_dnn.pyeasy_dnn.Model
'''
Parameters
1、name (string):模型名稱
2、inputs (tuple(hobot_dnn.pyeasy_dnn.pyDNNTensor)):模型的輸入tensor
3、outputs (tuple(hobot_dnn.pyeasy_dnn.pyDNNTensor)):模型的輸出tensor
4、forward (args &args, kwargs &kwargs):模型推理函數接口,輸入模型推理所必要的參數,返回模型推理結果
parameters:
input_tensor:輸入數據
core_id (int):模型推理的core id,可為0,1,2,默認為0表示任意核推理
priority (int):當前模型推理任務的優先級,范圍[0~255],越大優先級越高
'''
-------------------------------------------------------------------------------------------------------------------------------
其中,forward方法的input_tensor支持三種格式輸入:


forward方法的返回值為模型推理結果,有如下兩種情況:


resizer模型指在模型轉換時input_source設置為“resizer”編譯生成的模型,相關配置方式可參考社區X3 用戶手冊。resizer模型推理時,hobot_dnn會先使用ROI從輸入數據中摳圖后resize到模型輸入大小再送入模型進行推理。
*目前resizer模式暫只支持單輸入的nv12/nv12_bt601模型。

1.2 pyDNNTensorAI 算法輸入、輸出 tensor 類
-------------------------------------------------------------------------------------------------------------------------------
class hobot_dnn.pyeasy_dnn.pyDNNTensor
'''
Parameters:
1、properties (TensorProperties):tensor的屬性,詳細參見本文1.3節
2、buffer (numpy):tensor中的數據,數據訪問方式同numpy
3、name (string):tensor的名稱
'''
-------------------------------------------------------------------------------------------------------------------------------
1.3 TensorPropertiesAI 算法輸入/輸出 tensor 的屬性類
-------------------------------------------------------------------------------------------------------------------------------
class hobot_dnn.pyeasy_dnn.TensorProperties
'''
Parameters:
1、tensor_type (string):tensor的數據類型,如:NV12、BGR、float32等
2、dtype (string):數據的存儲類型,同numpy數據類型,如:int8、uint8、float32等
3、layout (string):數據排布格式,NHWC或者NCHW
4、shape (tuple):數據的shape信息,例如:(1,3,224,224)
'''
-------------------------------------------------------------------------------------------------------------------------------
1.4 loadload接口用于加載模型
-------------------------------------------------------------------------------------------------------------------------------
hobot_dnn.pyeasy_dnn.load(model_file)
'''
接口支持兩種模型加載方式:
1、輸入模型的文件路徑,加載單個模型,或者單個pack模型
model_file = "/userdata/single_model.bin"
models = hobot_dnn.pyeasy_dnn.load(model_file)
2、輸入模型的文件列表,加載多個模型
model_file = ["model1.bin", "model2.bin"]
models = hobot_dnn.pyeasy_dnn.load(model_file)
接口返回hobot_dnn.pyeasy_dnn.Model類型的tuple列表
'''
-------------------------------------------------------------------------------------------------------------------------------
2 快速上手示例X3派配套AI推理示例默認安裝在/app/ai_inference目錄下,包含如下示例:
-------------------------------------------------------------------------------------------------------------------------------
|-- 01_basic_sample # 從本地讀取圖片并完成mobilenetv1分類模型推理
|-- 02_usb_camera_sample # 從USB camera獲取視頻數據并完成FCOS檢測模型推理
|-- 03_mipi_camera_sample # 從MIPI camera獲取視頻數據并完成FCOS檢測模型推理
|-- 05_web_display_camera_sample # 基于MIPI Camera的FCOS目標檢測及web端展示
|-- 06_yolov3_sample # 從本地讀取圖片并完成Yolov3檢測模型推理
|-- 07_yolov5_sample # 從本地讀取圖片并完成Yolov5檢測模型推理
`-- models
-------------------------------------------------------------------------------------------------------------------------------
本節將以01_basic_sample為例,為大家展示如何使用hobot_dnn完成模型推理。運行以下示例您需要準備編譯好的混合異構模型mobilenetv1_224x224_nv12.bin(存放于/app/ai_inference/models路徑下),以及一張圖片zebra_cls.jpg(存放于01_basic_sample文件夾下)。
-------------------------------------------------------------------------------------------------------------------------------
from hobot_dnn import pyeasy_dnn as dnn
import numpy as np
import cv2

# 查看模型輸入輸出節點的信息
def print_properties(pro):
print("tensor type:", pro.tensor_type)
print("data type:", pro.dtype)
print("layout:", pro.layout)
print("shape:", pro.shape)

# 依據模型input_type_rt決定是否需要進行數據格式轉換(本實例所用模型為nv12輸入)
def bgr2nv12_opencv(image):
height, width = image.shape[0], image.shape[1]
area = height * width
yuv420p = cv2.cvtColor(image, cv2.COLOR_BGR2YUV_I420).reshape((area * 3 // 2,))
y = yuv420p[:area]
uv_planar = yuv420p[area:].reshape((2, area // 4))
uv_packed = uv_planar.transpose((1, 0)).reshape((area // 2,))

nv12 = np.zeros_like(yuv420p)
nv12[:height * width] = y
nv12[height * width:] = uv_packed
return nv12

# 1.加載模型
models = dnn.load('../models/mobilenetv1_224x224_nv12.bin')

# 2.查看模型輸入輸出節點的信息
for input in models[0].inputs:
print_properties(input.properties)
for output in models[0].outputs:
print_properties(output.properties)

# 3.準備輸入數據
# 打開圖片
img_file = cv2.imread('./zebra_cls.jpg')
# 把圖片縮放到模型的輸入尺寸
h, w = models[0].inputs[0].properties.shape[2], models[0].inputs[0].properties.shape[3]
resized_data = cv2.resize(img_file, (w, h), interpolation=cv2.INTER_AREA)
nv12_data = bgr2nv12_opencv(resized_data)

# 4.模型推理
outputs = models[0].forward(nv12_data)

# 5.后處理
np.argmax(outputs[0].buffer)
print("cls id: %d Confidence: %f" % (np.argmax(outputs[0].buffer), outputs[0].buffer[0][np.argmax(outputs[0].buffer)]))
-------------------------------------------------------------------------------------------------------------------------------


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 開發板試用
    +關注

    關注

    3

    文章

    301

    瀏覽量

    2108
收藏 人收藏

    評論

    相關推薦

    光庭信息獲地平線堅實后盾獎

    后盾獎”,高度肯定了雙方過往在智駕領域的合作成效。 過去兩年內,光庭信息基于地平線 J3、J5 及 J6 等多個平臺,打造了“泊車與駕駛一體化解決方案”,提供高性能的自動駕駛和泊車功能,可以輕松實現跨平臺遷移和新應用開發,有效幫
    的頭像 發表于 12-28 15:07 ?197次閱讀

    地平線榮獲比亞迪“最佳合作伙伴獎”

    近日,比亞迪舉辦2024年比亞迪新能源汽車核心供應商大會。在此次大會上,地平線榮獲“最佳合作伙伴獎”,成為唯一獲得該殊榮的智駕方案供應商。該獎項高度肯定了地平線在智駕技術和量產能力方面的突出貢獻。地平線創始人兼CEO余凱受邀出席
    的頭像 發表于 11-06 14:15 ?397次閱讀

    智駕科技企業地平線登陸港交所

    近日,智駕科技企業地平線地平線機器人-W,股票代碼:9660.HK)在香港交易所主板成功掛牌上市,募資總額高達54.07億港元,成為港股今年最大的科技IPO。
    的頭像 發表于 10-28 16:37 ?280次閱讀

    ETAS支持地平線征程6 AUTOSAR版本發布

    地平線于2024年北京車展期間推出了覆蓋自動駕駛全場景的征程6產品。征程6是地平線新一代家族系列產品,能夠覆蓋從主動安全ADAS到城區全場景NOA的智能駕駛需求。
    的頭像 發表于 10-15 17:34 ?740次閱讀

    【星閃物聯網開發套件體驗連載】智能交通燈

    。 開發套件已收到:星閃物聯網開發套件x1,星閃物聯網開發
    發表于 10-05 13:00

    地平線Journey 3的電源設計

    電子發燒友網站提供《地平線Journey 3的電源設計.pdf》資料免費下載
    發表于 09-04 10:48 ?0次下載
    <b class='flag-5'>地平線</b>Journey <b class='flag-5'>3</b>的電源設計

    樹莓x86還是arm

    樹莓(Raspberry Pi)是一款由英國樹莓基金會(Raspberry Pi Foundation)開發的微型計算機。它基于ARM架構,而非x86架構。 一、樹莓
    的頭像 發表于 08-30 15:42 ?1124次閱讀

    地平線港股IPO獲證監會備案

    自動駕駛領域的明星企業——地平線機器人(Horizon Robotics),近期獲得了中國證監會的批準,將在香港聯合交易所進行首次公開募股(IPO)。此次IPO的順利推進,標志著地平線向資本市場邁出了重要一步。
    的頭像 發表于 08-13 15:37 ?704次閱讀

    用悟空全志H3開發板做一個基于ROS系統的全向輪小車

    算: 5、總結 悟空H3開發板在ROS系統下構建全向輪小車的試用中表現出色。 其強大的硬件性能、ROS支持和控制操作性能使其成為機器人開發
    發表于 05-06 11:15

    智能駕駛頭部企業地平線赴港IPO

    地平線向港交所遞交了上市申請,正式啟動港股IPO進程,這一行動引起了市場的廣泛關注。在此次上市過程中,高盛、摩根士丹利以及中信建投共同擔任聯席保薦人,為地平線的上市之路提供了強大的支持。
    的頭像 發表于 03-28 16:45 ?863次閱讀

    地平線提交香港IPO申請

    智能駕駛計算方案提供商“地平線”正式遞交港股上市申請。據其公開文件,地平線在2023年實現了15.5億元的營收,同比顯著增長71.3%,毛利達到10.94億元,毛利率高達70.5%。
    的頭像 發表于 03-27 16:11 ?732次閱讀

    地平線向港交所遞交招股書

    智能駕駛計算方案領軍者地平線,近日正式向港交所遞交了招股書,高盛、摩根士丹利及中信建投為其聯席保薦人。這并非地平線首次試水資本市場,早在2021年,地平線就計劃科創板上市,并一度傳出赴美IPO的消息,但受資本市場
    的頭像 發表于 03-27 16:02 ?566次閱讀

    寶馬(中國)召回部分進口X3、2系和X4車型

    此次型號覆蓋的具體數量包括:2023年8月29日生產的進口X3車型1輛,2023年9月21日至9月25日生產的進口2系車型2輛,以及同一期間生產的進口X4車型48輛。
    的頭像 發表于 03-01 14:56 ?820次閱讀

    地平線正式開源Sparse4D算法

    地平線將業內領先的純視覺自動駕駛算法——Sparse4D系列算法開源,推動行業更多開發者共同參與到端到端自動駕駛、稀疏感知等前沿技術方向的探索中。目前,Sparse4D算法已在GitHub平臺上線,開發者可關注
    的頭像 發表于 01-23 10:18 ?782次閱讀

    【飛騰4G版免費試用】飛騰4G版開發板套裝測試及環境搭建

    。 飛騰4G版開發板套裝接口介紹: 飛騰4G版開發板套裝技術參數: 飛騰4G版開發
    發表于 01-22 00:47
    主站蜘蛛池模板: 日本熟妇乱人伦A片精品软件| 夜色88V精品国产亚洲AV| 最新精品学生国产自在现拍| 久久青草影院| 99精品国产在热久久| 日韩hd高清xxxⅹ| 日本理论片午午伦夜理片2021 | 学生妹被爆插到高潮无遮挡| 九九热精品在线观看| 99爱在线精品视频网站| 天堂岛www天堂资源在线| 久久国产精品二区99| sao虎影院桃红视频在线观看| 午夜色网站| 蜜臀AV久久国产午夜福利软件| 光溜溜的美女直播软件| 一个人免费视频在线观看高清版| 欧美亚洲日韩欧洲不卡| 国产亚洲精品视频亚洲香蕉视| 91成品视频| 先锋资源久久| 男人私gay挠脚心vk视频| 国产色综合久久无码有码| 中国bdsmchinesehd| 天天躁人人躁人人躁狂躁| 快穿之H啪肉| 国产人A片在线乱码视频| 2022精品福利在线小视频| 亚欧乱亚欧乱色视频| 欧美日韩精品一区二区三区四区 | 18美女腿打开无遮软件| 精品午夜久久福利大片免费| xnxnxn69日本| 伊人草| 四虎永久在线精品国产| 男人网站在线| 挤奶门事件完整照片| 国产成人高清亚洲一区app| 99精品中文字幕在线观看| 亚洲午夜久久久久中文字幕| 色综合久久久久久|