色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

測不對SiC MOSFET驅動波形六大原因

硬件攻城獅 ? 來源:功率器件顯微鏡 ? 作者:功率器件顯微鏡 ? 2022-10-28 10:09 ? 次閱讀

測不對SiC MOSFET驅動波形六 大 原 因

e46a1cb0-5662-11ed-a3b6-dac502259ad0.png

開關特性是功率半導體開關器件最重要的特性之一,由器件在開關過程中的驅動電壓、端電壓、端電流表示。一般在進行器件評估時可以采用雙脈沖測試,而在電路設計時直接測量在運行中的變換器上的器件波形,為了得到正確的結論,獲得精準的開關過程波形至關重要。

SiC MOSFET相較于Si MOS和IGBT能夠顯著提高變換器的效率和功率密度,同時還能夠降低系統成本,受到廣大電源工程師的青睞,越來越多的功率變換器采用基于SiC MOSFET的方案。SiC MOSFET與Si開關器件的一個重要區別是它們的柵極耐壓能力不同,Si開關器件柵極耐壓能力一般都能夠達到±30V,而SiC MOSFET柵極正壓耐壓能力一般在+20V至+25V,負壓耐壓能力一般僅有-3V至-10V。同時,SiC MOSFET開關速度快,開關過程中柵極電壓更容易發生震蕩,如果震蕩超過其柵極耐壓能力,則有可能導致器件柵極可靠性退化或直接損壞。

很多電源工程師剛剛接觸SiC MOSFET不久,往往會在驅動電壓測量上遇到問題,即測得的驅動電壓震蕩幅值較大、存在與理論不相符的尖峰,導致搞不清楚是器件的問題還是電路設計的問題,進而耽誤開發進度。

接下來我們將向您介紹六種由于測試問題而導致的驅動電壓離譜的原因。

原因1:高壓差分探頭衰減倍數過大

高壓差分探頭的為差分輸入且輸入阻抗高,在電源開發過程中一般都會選擇它來測量驅動波形。

有時在使用高壓差分探頭時獲得的驅動波形顯得非常粗,這往往是由于高壓差分探頭的衰減倍數過大導致的。衰減倍數大,高壓差分探頭的量程就大,使得分辨率大幅下降,同時示波器在還原信號時還會將噪聲放大。此時就需要選擇衰減倍數較小的高壓差分探頭或選擇高壓差分探頭衰減比較小的檔位。我們使用圖1中的高壓差分探頭測量驅動電壓,衰減倍數分別選擇50倍和500倍,在下圖中可以明顯到500倍衰減倍數下驅動波形非常粗。

e4c20cb8-5662-11ed-a3b6-dac502259ad0.png

50倍與500倍衰減波形對比

原因2:高壓差分探頭測量線未雙絞

高壓差分探頭一般用于測量高壓信號,為了使用安全及方便接線,其前端是兩根接近20cm的測量線。在進行測量時,可以將兩根測量線看作為一個天線,會接收外界的磁場信號。而SiC MOSFET的開關速度快,開關過程電流變化速率大,其產生的磁場穿過由高壓差分探頭測量線形成的天線時就會影響測量結果。為了降低這一影響,可以將高壓差分探頭的兩根測量線進行雙絞,盡量減小它們圍成的面積。從下圖中可以看到,在將測量線未雙絞進行雙絞后,驅動電壓波形的震蕩幅度明顯降低了。

e59bc8d6-5662-11ed-a3b6-dac502259ad0.png

e5a98ad4-5662-11ed-a3b6-dac502259ad0.png

是否雙絞的波形對比

原因3:無源探頭未進行阻抗匹配

e5f07ae8-5662-11ed-a3b6-dac502259ad0.png

阻抗匹配與未阻抗匹配波形對比

無源探頭衰減倍數小、帶寬高,往往可以在雙脈沖測試時用來獲得更為精準的驅動電壓波形。無源探頭的等效電路如下所示,只有當其與示波器達到阻抗匹配時才能獲得正確的波形。一般情況下,我們可以通過旋轉無源探頭尾部的旋鈕調節電容來進行阻抗匹配調節,此外還有部分探頭能夠在示波器上完成自動補償。

當驅動電壓為-4V/+15V時,通過圖8可以看到,是否正確補償對測量結果有非常大的影響。當探頭未進行阻抗匹配時,驅動波形振蕩幅度明顯變大,測量量值也更大,這將會導致對驅動電壓的誤判。當探頭正確阻抗匹配時,驅動電壓振幅更小,測量值與實際外加電壓一致。

e6071cd0-5662-11ed-a3b6-dac502259ad0.jpg

無源探頭等效示意圖

參考圖為泰克無源探頭

e6122ad0-5662-11ed-a3b6-dac502259ad0.jpg

原因4:無源探頭未使用最小環路測量

無源探頭標配的接地線有接近10cm長,采用這樣的接地線時,會出現同高壓差分探頭一樣,即測量線圍出一個很大的面積,成為一個天線,測量結果會受到SiC MOSFET開關過程中高速變化的電流的影響。同時,過長的接地線可以看做一個電感,也會導致震蕩的產生。

為了降低這一影響,可以使用廠商標配的彈簧接地針,其長度短、圍出的面積更小。從上圖中可以看到,使用標配接地線時,驅動波形震蕩嚴重,其峰值最大達到xxV,超過了SiC MOSFET柵極耐壓能力;當使用彈簧接地針后,波形震蕩大大減輕了,幅值均在SiC MOSFET柵極耐壓能力范圍內。

e6659508-5662-11ed-a3b6-dac502259ad0.png

e68c72cc-5662-11ed-a3b6-dac502259ad0.png

長接地線與短彈簧地線波形對比

e6c55d76-5662-11ed-a3b6-dac502259ad0.jpg

示波器自帶長接地線、短彈簧地線

原因5:探頭高頻共模抑制比不夠

對于橋式電路中的上管SiC MOSFET,其S極為橋臂中點,其電壓在電路工作時是跳變的。其跳變的幅度為電路的母線電壓,對于1200V SiC MOSFET而言,母線電壓為800V;其跳變的速度為SiC MOSFET的開關速度,可達到100V/ns。此時要測量上管的驅動電壓,就需要面對這樣高幅值、高速度跳變的共模電壓。

從上圖中可以看到,當采用常見的高壓差分探頭時,驅動波形振蕩更大,在第一個脈沖內Ton時間測量值偏低,在Toff時間內存在偏置,在第二個脈沖上升沿存在嚴重的震蕩。這主要是由于高壓差分探頭在高頻下的共模抑制比不夠導致的,此時我們就需要使用具有更高共模抑制比的光隔離探頭來測量上管驅動電壓波形。從上圖中可以看到,當采用光隔離探頭后,波形震蕩明顯減小,第二脈沖上升沿的嚴重震蕩消失,在關斷時間內電壓測量值與實際外加電壓接近。

e709a44a-5662-11ed-a3b6-dac502259ad0.png

e7215e8c-5662-11ed-a3b6-dac502259ad0.png

e72a210c-5662-11ed-a3b6-dac502259ad0.png

光隔離探頭與高壓差分探頭波形對比

原因6:測量點離器件引腳根部過遠

e7a040da-5662-11ed-a3b6-dac502259ad0.jpg

4pin的圖片和等效示意圖
當我們測量驅動電壓波形時,探頭并不能直接接觸到SiC MOSFET芯片,而只是能接到器件的引腳上。可以將器件的引腳看作為電感,那么我們實際測得的驅動電壓為真實的柵-源極電壓和測量點之間引腳電感上壓降之和。那么,測量點之間引腳長度越長,測量結果與SiC MOSFET芯片上真實的柵-源極電壓差異越大。
為了降低這一影響,需要將探頭接到器件引腳的根部,最大限度得縮短測量點之間引腳的長度。從圖14中可以看到,當測量點位于引腳根部時,開通驅動波形振蕩幅值及振蕩頻率明顯減少,關斷驅動波形振蕩幅值也明顯減少。

探頭接引腳根部與遠離根部

e87334d6-5662-11ed-a3b6-dac502259ad0.png

e88267a8-5662-11ed-a3b6-dac502259ad0.png

引腳根部與遠離根部波形對比

要想使用好SiC MOSFET,充分發揮其優異的特性,使用合適的設備和測量方法獲得正確的波形非常重要。相信讀完本文的你,不會再被錯誤的波形坑了。

審核編輯 :李倩

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • MOSFET
    +關注

    關注

    147

    文章

    7185

    瀏覽量

    213470
  • SiC
    SiC
    +關注

    關注

    29

    文章

    2829

    瀏覽量

    62692

原文標題:測的離譜!SiC MOSFET驅動電壓測試結果離譜的六大原因!

文章出處:【微信號:mcu168,微信公眾號:硬件攻城獅】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    SiC MOSFET如何選擇柵極驅動

    硅基MOSFET和IGBT過去一直在電力電子應用行業占據主導地位,這些應用包括不間斷電源、工業電機驅動、泵以及電動汽車(EV)等。然而,市場對更小型化產品的需求,以及設計人員面臨的提高電源能效的壓力,使得碳化硅(SiC
    的頭像 發表于 01-02 14:24 ?344次閱讀
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>如何選擇柵極<b class='flag-5'>驅動</b>器

    EMC整改的六大步驟

    EMC(電磁兼容性)整改的六大步驟是確保電子設備在電磁環境中能夠正常工作且不對其他設備產生干擾的重要過程。以下是EMC整改的六大步驟及其詳細說明: 一、查找確認輻射源 這是整改的第一步,目的是確定
    的頭像 發表于 12-10 14:15 ?301次閱讀
    EMC整改的<b class='flag-5'>六大</b>步驟

    SiC MOSFET模塊封裝技術及驅動設計

    碳化硅作為一種寬禁帶半導體材料,比傳統的硅基器件具有更優越的性能。碳化硅SiC MOSFET作為一種新型寬禁帶半導體器件,具有導通電阻低,開關損耗小的特點,可降低器件損耗,提升系統效率,更適合應用于高頻電路。碳化硅SiC
    的頭像 發表于 10-16 13:52 ?1395次閱讀
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>模塊封裝技術及<b class='flag-5'>驅動</b>設計

    燒結銀AS9378火爆的六大原因

    低溫燒結銀AS9378近年來在電子材料領域迅速崛起,其火爆程度令人矚目。這款采用納米技術和低溫燒結工藝的高性能材料,憑借其獨特的優勢在眾多應用中脫穎而出。以下,我們將深入探討低溫燒結銀AS9378火爆的六大原因
    的頭像 發表于 09-20 17:27 ?434次閱讀

    SiC MOSFETSiC SBD的區別

    SiC MOSFET(碳化硅金屬氧化物半導體場效應晶體管)和SiC SBD(碳化硅肖特基勢壘二極管)是兩種基于碳化硅(SiC)材料的功率半導體器件,它們在電力電子領域具有廣泛的應用。盡
    的頭像 發表于 09-10 15:19 ?1723次閱讀

    OBC DC/DC SiC MOSFET驅動選型及供電設計要點

    電子發燒友網站提供《OBC DC/DC SiC MOSFET驅動選型及供電設計要點.pdf》資料免費下載
    發表于 09-10 10:47 ?0次下載
    OBC DC/DC <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b><b class='flag-5'>驅動</b>選型及供電設計要點

    igbt驅動波形振蕩原因及解決方法

    IGBT(絕緣柵雙極晶體管)是一種廣泛應用于電力電子領域的功率半導體器件。它結合了MOSFET和雙極型晶體管(BJT)的優點,具有高輸入阻抗、低導通壓降、快速開關速度等特點。 一、IGBT驅動波形
    的頭像 發表于 07-25 10:38 ?4045次閱讀

    Littelfuse發布IX4352NE低側SiC MOSFET和IGBT柵極驅動

    近日,Littelfuse公司發布了IX4352NE低側SiC MOSFET和IGBT柵極驅動器,這款新型驅動器在業界引起了廣泛關注。
    的頭像 發表于 05-23 11:34 ?749次閱讀

    Littelfuse宣布推出IX4352NE低側SiC MOSFET和IGBT柵極驅動

    Littelfuse宣布推出IX4352NE低側SiC MOSFET和IGBT柵極驅動器。這款創新的驅動器專門設計用于驅動工業應用中的碳化硅
    的頭像 發表于 05-23 11:26 ?812次閱讀

    碳化硅模塊(SiC模塊/MODULE)大電流下的驅動器研究

    由于碳化硅(SiCMOSFET具有高頻、低損耗、高耐溫特性,在提升新能源汽車逆變器效率和功率密度方面具有巨大優勢。對于SiC MOSFET功率模塊,研究大電流下的短路保護問題、高開關
    發表于 05-14 09:57

    如何更好地驅動SiC MOSFET器件?

    IGBT的驅動電壓一般都是15V,而SiC MOSFET的推薦驅動電壓各品牌并不一致,15V、18V、20V都有廠家在用。更高的門極驅動電壓
    的頭像 發表于 05-13 16:10 ?659次閱讀

    AMEYA360:MOS管失效的六大原因

    將再次迎來爆發性的市場需求。 在開關電源應用領域,由于電源的 Controller 做的已經非常完善,且大部分 Controller 為純硬件控制,廠家一般也會對布局布線和 MOS 的驅動做專門的優化,因此在開關電源應用中的 MOS 燒壞的情況比較少,大部分表現為過熱。
    的頭像 發表于 04-23 13:56 ?832次閱讀
    AMEYA360:MOS管失效的<b class='flag-5'>六大原因</b>

    MOS管中漏電流產生的主要六大原因

    MOS管中漏電流產生的主要六大原因? MOS管(金屬-氧化物-半導體場效應晶體管)是一種重要的半導體器件,廣泛應用于各種電子設備中。然而,MOS管中漏電流的產生是一個常見的問題,需要仔細研究和解
    的頭像 發表于 03-27 15:33 ?5530次閱讀

    水下航行器電機的SiC MOSFET逆變器設計

    利用 SiC 功率器件開關頻率高、開關損耗低等優點, 將 SiC MOSFET 應用于水下航行器大功率高速電機逆變器模塊, 對軟硬件進行設計。
    發表于 03-13 14:31 ?342次閱讀
    水下航行器電機的<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>逆變器設計

    在通用PWM發電機中,可以用任何型號替換SiC MOSFET嗎?

    在通用PWM發電機中,我可以用任何型號替換SiC MOSFET嗎?
    發表于 03-01 06:34
    主站蜘蛛池模板: 青柠在线观看免费播放电影| 午夜久久影院| 一色狗影院| 久久亚洲精品成人综合| 中文字幕无码亚洲字幕成A人蜜桃| 老王午夜69精品影院| chinese黑人第一次| 色尼玛亚洲| 狠狠撩色姣姣综合久久| 中字幕视频在线永久在线 | 久操久操久操| a三级黄色片| 午夜国产精品免费观看| 久久精品电影久久电影大全| 99在线精品免费视频| 偷偷鲁青春草原视频分类| 久久福利影院| 天天久久影视色香综合网| 暖暖视频在线观看高清...| 把英语老师强奷到舒服动态图 | 9久久免费国产精品特黄| 日本高清在线一区二区三区| 国产人妻精品午夜福利免费不卡 | 偷窥欧美wc经典tv| 久久免费看少妇级毛片蜜臀| jjzz大全| 伊人久久综合影院| 少妇系列之白嫩人妻| 久久人人爽人人片AV人成| 国产白色视频在线观看w| 国产人妖一区二区| 2020精品国产视| 西西人体大胆牲交PP6777| 年轻的老师5理伦片| 国内精品伊人久久久影院| 冰山高冷受被c到哭np双性| 手机毛片免费看| 高h全肉图| 在线视频a| 性欧美video| 日韩精品一卡二卡三卡四卡2021|