色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

傅里葉變換對于通信的重要性

射頻學堂 ? 來源:射頻學堂 ? 作者:射頻學堂 ? 2022-11-28 15:44 ? 次閱讀

對于一個離開課堂十余年的射頻工程師來說,傅里葉變換已經不知道埋藏在腦子里的那個角落,或者根本就沒在腦子里停留過。但無論如何,傅里葉變換對現在通信的重要性還是不言而語。當我們已經習慣用頻域去描述一個信號的時候,你可曾思考過其真實的樣子到底是什么?為什么這幾個短短的頻譜就可以描述一個信號?

所以呢,我們首先得感謝傅里葉,正是傅里葉大神的天才發明,帶給我們一個全新的看待問題的角度,讓我們跳出時域這個圈子,站在頻域的角度去看待問題。這樣做又有什么好處呢?且看下文。

其實傅里葉大神在最初提出這個思想的時候,并沒有想著去解決信號的問題,而是要來描述溫度的變化曲線,其實當時麥克斯韋也還沒有出生。傅里葉大神在1830年去世的時候,麥克斯韋還是是個躲在媽媽肚子里的小貝比呢。發明電話的那個亞歷山大貝爾還要再過十幾年才出生。所以,無心插柳柳成蔭吧。其實傅里葉變換除了在通信上有很重要的應用,在很多領域都有著不可替代的重要性。其作為一個數學工具,已經遍布現代科技的各個角落。傅里葉大神當時在法國科學學會上發表了一篇論文,這篇論文用正弦波來描述溫度變化曲線。如果只簡單描述溫度曲線的話也就罷啦,他出人意料的提出了一個在當時具有相當大的爭議性的論斷:任何連續周期信號可以由一組適當的正弦曲線組合而成。就像我們做選擇題一樣,太武斷的答案一定是錯的,所以當時人們也特別質疑過這個論斷,最著名的當屬兩個最著名的數學家拉格朗日和拉普拉斯。當時他們哥倆是傅里葉這篇論文的審稿人。所以說當時真是個神仙打架的時代。剛好在傅里葉大神的這篇論文審查時,拉格朗日和拉普拉斯兩位拉氏牛人就干起來了。拉普拉斯同意傅里葉的觀點,并同意發表這篇論文,而拉格朗日則堅決反對,因為拉格朗日堅決認為,傅里葉的方法無法表示帶棱角的信號。大家被高等數學里面拉格朗日的各種數學分析方法折磨,就知道,這個牛人我們惹不起,當時更沒人去挑戰拉格朗日的權威。因此這個論文就遲遲沒有發表。

不用說,現在傅里葉的論斷確實是正確的,為什么呢?因為老師說了,我們學了。那到底是不是這個回事呢?

我們先來看一下矩形信號能不能用一組適當的正弦曲線來組合而成?看下圖所示,一個正弦曲線時,和矩形差遠了。但是當疊加的正弦信號越來越多的時候,這個組合而來的圖形就越來越方了。當有無窮多個正弦曲線組合到一起的時候,這個組合圖就是矩形了。奇怪的是拉格朗日發明了無窮級數,怎么能沒想到這點呢?可能是屁股決定了腦袋。

a4a64e9e-6ded-11ed-8abf-dac502259ad0.png

a4b827b8-6ded-11ed-8abf-dac502259ad0.png

a4cc1156-6ded-11ed-8abf-dac502259ad0.png

a4e8a294-6ded-11ed-8abf-dac502259ad0.png

a5062364-6ded-11ed-8abf-dac502259ad0.gif

當然,人們對傅里葉的論斷又做了補充和擴展。傅里葉變換就是:

f(t)是t的周期函數,如果t滿足狄里赫萊條件:在一個以2T為周期內f(X)連續或只有有限個第一類間斷點,附f(x)單調或可劃分成有限個單調區間,則F(x)以2T為周期的傅里葉級數收斂,和函數S(x)也是以2T為周期的周期函數,且在這些間斷點上,函數是有限值;在一個周期內具有有限個極值點;絕對可積。

a522b2cc-6ded-11ed-8abf-dac502259ad0.jpg

我們先把上面這個公式拋在腦后,接著講一下為什么是正弦曲線Sin(x)/余弦曲線?因為它簡單啊。它就是一個棍在轉圈圈。當一個點在繞著一個圓心做圓周運動時,其隨時間變化的曲線就是正弦曲線/余弦曲線。

a548987a-6ded-11ed-8abf-dac502259ad0.gif

當我們把一組沿著不同圓周,不同圓心轉圈圈的點都拉到時間軸上來的時候,其就會變得越來越方。

a56ee746-6ded-11ed-8abf-dac502259ad0.gif

那跟頻域有什么關系呢?

好像有沒啥關系,這就是傅里葉級數吧。

a5985f22-6ded-11ed-8abf-dac502259ad0.png

沒錯,就是傅里葉級數,但是把傅里葉級數的求和表示成積分形式就是傅里葉變換。

a5ba61a8-6ded-11ed-8abf-dac502259ad0.png

可能這里大家有點疑惑,上面傅里葉級數用的是三角函數Sin和Cos,但是下面的傅里葉變換卻換成了e的指數。原因有兩個,一是,太懶了,不想再編輯公式,第二個是感謝歐拉!歐拉統一了e的指數和正余弦函數:

a5d63220-6ded-11ed-8abf-dac502259ad0.png

我們繼續研究上文的那個矩形曲線。我們把組成矩形曲線的這些正弦曲線鋪開放平,就可以觀察到它的頻域方向。從頻域方向看過去,就是一個個一定幅度的固定在某一頻率上的線。從頻域方向看過去,所有都靜止了,沒有時間了。也就是說,我們通過傅里葉變化,把信號從時域空間搬到了頻域空間。

a5edadb0-6ded-11ed-8abf-dac502259ad0.jpg

就像我們之前討論電磁波的三要素一樣,這個頻域信號也具有同樣的三要素:幅度,頻率和相位。幅度就是信號的強弱,或者是傅里葉級數里面的an,頻率就是里面的a608ae80-6ded-11ed-8abf-dac502259ad0.png,相位就是信號的初始位置。

至此,我們就把信號從時域空間搬運到了頻域空間,而且兩個空間所描述的信號是一模一樣的,就像一個人有兩個名字一樣,劉備和劉玄德都是指的同樣一個人。頻域里的信號和時域里的信號一樣。所以,有時候分析一個信號,我們可以用頻譜分析儀去看它的頻譜,也可以用示波器去看它的波形一樣。

a61539e8-6ded-11ed-8abf-dac502259ad0.gif

那么只要是滿足狄里赫萊條件的信號,都可以用傅里葉變換把其從時域變換到頻域。因為它都可以分解成一系列合適的正弦曲線的組合。

a63ab056-6ded-11ed-8abf-dac502259ad0.png

比如像FM調制的信號,其時域波形和頻譜如下圖所示。

a6511670-6ded-11ed-8abf-dac502259ad0.png

審核編輯:郭婷

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 射頻
    +關注

    關注

    106

    文章

    5676

    瀏覽量

    169027
  • 傅里葉變換
    +關注

    關注

    6

    文章

    442

    瀏覽量

    42871

原文標題:奇妙的傅里葉變換

文章出處:【微信號:射頻學堂,微信公眾號:射頻學堂】歡迎添加關注!文章轉載請注明出處。

收藏 1人收藏

    評論

    相關推薦

    鑒源實驗室·HTTPS對于網絡安全的重要性

    本文旨在深入解析HTTPS的工作原理、安全以及其在網絡安全中的重要性
    的頭像 發表于 02-19 14:31 ?229次閱讀
    鑒源實驗室·HTTPS<b class='flag-5'>對于</b>網絡安全的<b class='flag-5'>重要性</b>

    構建綜合指揮調度系統的重要性

    構建綜合指揮調度系統的重要性不言而喻,它對于提升應急響應速度、優化資源配置、加強跨部門協作、提高決策效率和確保公共安全等方面都具有至關重要的作用。以下是古河云科技構建綜合指揮調度系統重要性
    的頭像 發表于 02-06 16:56 ?254次閱讀

    DFT與離散時間傅里葉變換的關系 DFT在無線通信中的應用

    DFT與離散時間傅里葉變換(DTFT)的關系 DFT(離散傅里葉變換)與DTFT(離散時間傅里葉變換)都是信號處理中的重要工具,用于將信號從時域轉換到頻域。它們之間存在一定的聯系和區別
    的頭像 發表于 12-20 09:21 ?1156次閱讀

    CIM系統的定義、組成和對于FAB廠的重要性

    ? 本文介紹了CIM(Computer Integrated Manufacturing)系統的定義、組成和對于FAB廠的重要性。 CIM(Computer Integrated
    的頭像 發表于 12-16 16:30 ?1196次閱讀

    常見傅里葉變換錯誤及解決方法

    傅里葉變換是一種數學工具,用于將信號從時域轉換到頻域,以便分析其頻率成分。在使用傅里葉變換時,可能會遇到一些常見的錯誤。 1. 采樣定理錯誤 錯誤描述: 在進行傅里葉變換之前,沒有正確地采樣信號
    的頭像 發表于 11-14 09:42 ?1663次閱讀

    傅里葉變換的基本性質和定理

    傅里葉變換是信號處理和分析中的一項基本工具,它能夠將一個信號從時間域(或空間域)轉換到頻率域。以下是傅里葉變換的基本性質和定理: 一、基本性質 線性性質 : 傅里葉變換是線性的,即對于
    的頭像 發表于 11-14 09:39 ?1962次閱讀

    經典傅里葉變換與快速傅里葉變換的區別

    經典傅里葉變換與快速傅里葉變換(FFT)在多個方面存在顯著的區別,以下是對這兩者的比較: 一、定義與基本原理 經典傅里葉變換 : 是一種將滿足一定條件的某個函數表示成三角函數(正弦和/或余弦函數
    的頭像 發表于 11-14 09:37 ?810次閱讀

    如何實現離散傅里葉變換

    復雜度較高,為O(n^2)。具體步驟如下: 對于長度為N的離散信號x(n),其離散傅里葉變換X(k)定義為: X(k)=∑[n=0 to N-1] x(n)W_N^(kn),其中W_N=exp(-j2
    的頭像 發表于 11-14 09:35 ?808次閱讀

    傅里葉變換與卷積定理的關系

    傅里葉變換與卷積定理之間存在著密切的關系,這種關系在信號處理、圖像處理等領域中具有重要的應用價值。 一、傅里葉變換與卷積的基本概念 傅里葉變換 : 是一種將時間域(或空間域)信號轉換為
    的頭像 發表于 11-14 09:33 ?1341次閱讀

    傅里葉變換與圖像處理技術的區別

    )轉換到頻域的數學工具。它基于傅里葉級數的概念,即任何周期函數都可以表示為不同頻率的正弦波和余弦波的疊加。對于非周期信號,傅里葉變換提供了一種將信號分解為不同頻率成分的方法。 在圖像處理中,傅里葉變換可以將圖
    的頭像 發表于 11-14 09:30 ?629次閱讀

    傅里葉變換在信號處理中的應用

    在現代通信和信號處理領域,傅里葉變換(FT)扮演著核心角色。它不僅幫助我們分析信號的頻率成分,還能用于濾波、壓縮和信號恢復等多種任務。 傅里葉變換的基本原理 傅里葉變換是一種將信號從時
    的頭像 發表于 11-14 09:29 ?3485次閱讀

    傅里葉變換的數學原理

    傅里葉變換的數學原理主要基于一種將函數分解為正弦和余弦函數(或復指數函數)的線性組合的思想。以下是對傅里葉變換數學原理的介紹: 一、基本原理 傅里葉級數 :對于周期連續信號,可以將其
    的頭像 發表于 11-14 09:27 ?1252次閱讀

    求助,ADC接地的重要性

    ADC接地的重要性
    發表于 06-04 07:56

    論RISC-V的MCU中UART接口的重要性

    的適用重要性。在某些應用場景中,只需要異步通信能力的UART接口就能滿足需求,從而簡化了系統設計和實現。 綜上所述,RISC-V的MCU中UART接口的重要性在于其廣泛的適用
    發表于 05-27 15:52

    頻譜儀的觸發方式及其重要性

    在無線通信、電子工程及科研領域中,頻譜儀是不可或缺的測量與分析工具。頻譜儀能夠實時捕獲和分析信號的頻譜特性,從而幫助工程師和技術人員了解信號的狀態,優化系統性能。然而,頻譜儀的觸發方式對于其測量結果的準確和可靠性具有
    的頭像 發表于 05-20 18:01 ?1779次閱讀
    主站蜘蛛池模板: 成激人情在线影院920 | 97国产在线播放 | 公和我做好爽添厨房中文字幕 | 国产日韩精品一区二区在线观看 | 日韩插啊免费视频在线观看 | 伊人久久大香线蕉综合bd高清 | 韩日美无码精品无码 | 亚洲欧美中文日韩v在线 | 色综合伊人色综合网站中国 | 亚洲精品123区在线观看 | 国产国产人免费观看在线视频 | jizz中国女人| 亚洲国产系列一区二区三区 | 国产成人精品免费青青草原app | 色悠久久久久综合欧美99 | qvod12| 8090碰成年女人免费碰碰尤物 | seyeye高清视频在线 | 全黄H全肉细节文短篇 | 亚洲精品午夜久久久伊人 | 久久激情网 | 男男校园园bl文全肉高h寝室 | 美女被撕开胸罩狂揉大乳 | 亚洲免费无l码中文在线视频 | 解开美女胸衣2破解版 | 亚洲熟少妇在线播放999 | 粉嫩极品国产在线观看 | 午夜剧场1000 | 超碰国产视频免费播放 | z0000性欧美 YY8848高清私人影院 | 久久久无码精品亚洲欧美 | 男人扒开添女人屁股 | 老师破女学生特级毛片 | 99精品免费久久久久久久久日本 | 成人午夜精品无码区久久漫画日本 | 13小箩利洗澡无码视频APP | 最近的2019中文字幕HD | 免费看大黄高清网站视频在线 | 国内精品伊人久久久影院 | 男女全黄h全肉细节文 | RUNAWAY韩国动漫免费网 |

    電子發燒友

    中國電子工程師最喜歡的網站

    • 2931785位工程師會員交流學習
    • 獲取您個性化的科技前沿技術信息
    • 參加活動獲取豐厚的禮品