色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何通過最小化熱回路PCB ESR和ESL來優化開關電源布局

星星科技指導員 ? 來源:ADI ? 作者:Jingjing Sun, Ling ? 2022-11-30 11:02 ? 次閱讀

作者:Jingjing Sun, Ling Jiang, and Henry Zhang

介紹

對于電源轉換器,具有最小寄生參數的熱回路PCB布局可以提高電源效率,降低電壓振鈴,并減少電磁干擾(EMI)。本文討論如何通過最小化PCB等效串聯電阻(ESR)和等效串聯電感(ESL)來優化熱回路布局設計。本文研究并比較了影響因素,包括去耦電容位置、功率FET尺寸和位置以及過孔布局。通過實驗驗證了分析的有效性,總結了最小化PCB ESR和ESL的有效方法。

熱回路和PCB布局寄生參數

開關模式功率轉換器的熱回路定義為由HF電容和相鄰功率FET形成的關鍵高頻(HF)交流電流環路。它是功率級PCB布局中最關鍵的部分,因為它包含高dv/dt和di/dt噪聲成分。設計不佳的熱回路布局會受到高水平的PCB寄生參數的影響,包括ESL、ESR和等效并聯電容(EPC),這些參數對功率轉換器的效率、開關性能和EMI性能有重大影響。

圖1所示為同步降壓DC-DC轉換器原理圖。熱回路由MOSFET M1和M2以及去耦電容C形成在.M1 和 M2 的開關動作會產生高頻 di/dt 和 dv/dt 噪聲。C在提供低阻抗路徑以旁路HF噪聲成分。然而,寄生阻抗(ESR,ESL)存在于元件封裝內和熱回路PCB走線中。通過ESL的高di/dt噪聲會導致HF振鈴,進而產生EMI。存儲在ESL中的能量在ESR上耗散,導致額外的功率損耗。因此,應盡量減少熱回路PCB的ESR和ESL,以減少HF振鈴并提高效率。

準確提取熱回路ESR和ESL有助于預測開關性能并改進熱回路設計。元件的封裝和PCB走線都會影響總環路寄生參數。這項工作主要集中在PCB布局設計上.用戶可以使用一些工具來提取PCB寄生參數,例如Ansys Q3D,FastHenry/FastCap,StarRC等。Ansys Q3D等商用工具可提供精確的仿真,但通常價格昂貴。FastHenry/FastCap是一款基于部分單元等效電路(PEEC)數值建模的免費工具1并且可以通過編程提供靈活的仿真,以探索不同的布局設計,盡管需要額外的編碼。FastHenry/FastCap中寄生參數提取的有效性和準確性已經過驗證,并與Ansys Q3D進行了比較,結果一致。2,3在本文中,FastHenry 被用作提取 PCB ESR 和 ESL 的經濟高效的工具。

pYYBAGOGyAKAZkFCAABQ-d2vO_8463.png

圖1.具有熱回路 ESR 和 ESL 的降壓轉換器

熱回路 PCB ESR 和 ESL 與去耦電容器位置的關系

在本節中,C 的影響在基于ADI公司的LTM4638μModule穩壓器演示板DC2665A-B對位置進行了研究。LTM4638 是一款集成式 20 V?在、15 A 降壓型降壓轉換器模塊,采用微型 6.25 mm × 6.25 mm × 5.02 mm BGA 封裝。它具有高功率密度、快速瞬態響應和高效率。該模塊集成了一個小型HF陶瓷C在內部,雖然還不夠,但受模塊封裝尺寸的限制。圖 2 至 4 顯示了演示板上的三種不同熱回路以及額外的外部 C在.第一個是垂直熱回路 1(圖 2),其中 C合1放置在μModule穩壓器正下方的底層。The μModule V在和接地 BGA 引腳連接到 C合1直接通過過孔。這些連接提供了演示板上最短的熱回路路徑。第二個熱回路是垂直熱回路 2(圖 3),其中 CHNS仍放置在底層,但移至μModule穩壓器的側面區域。因此,在熱回路中增加了一條額外的PCB走線,與垂直熱回路1相比,預計ESL和ESR更大。第三個熱回路選項是水平熱回路(圖 4),其中 CHNR放置在靠近μModule穩壓器的頂層。The μModule V在和 GND 引腳連接到 CHNR通過頂層銅而不通過過孔。盡管如此,V在頂層的銅寬受另一個引腳排列的限制,導致與垂直熱回路1相比,環路阻抗增加。表1比較了FastHenry提取的PCB ESR和熱回路的ESL。正如預期的那樣,垂直熱回路 1 具有最低的 PCB ESR 和 ESL。

pYYBAGOGyAqAB4WUAACPVc3SXkA939.png

圖2.垂直熱回路 1:(a) 頂視圖和 (b) 側視圖。

poYBAGOGyBCATgnOAACShTvQk3E113.png

圖3.垂直熱回路 2:(a) 頂視圖和 (b) 側視圖。

pYYBAGOGyBaAWN7wAAB_JykYGAU391.png

圖4.水平熱回路:(a) 頂視圖和 (b) 側視圖。

poYBAGOGyB6AeJTzAAAhZ4U-mN8684.png

為了實驗驗證不同熱回路中的ESR和ESL,演示板效率和V在測試12 V至1 V CCM操作下的交流紋波。從理論上講,較低的ESR導致更高的效率,而較小的ESL導致更高的V西 南部振鈴頻率和較低的V在漣漪幅度。圖5a顯示了測得的效率。垂直熱回路 1 提供與最低 ESR 相對應的最高效率。水平熱回路和垂直熱回路1之間的損耗差也是基于提取的ESR計算的,這與圖5b所示的測試結果一致。五世在圖5c中的HF紋波波形是跨C測試的在.水平熱回路具有更高的V在紋波幅度和較低的振鈴頻率,從而驗證了與垂直熱回路 1 相比更高的環路 ESL。此外,由于環路ESR較高,V在水平熱回路中的波紋比垂直熱回路 1 中的波紋衰減得更快。此外,較低的V在紋波可降低 EMI,并允許更小的 EMI 濾波器尺寸。

poYBAGOGyCWATAZCAAC5OvtNVwo919.png

圖5.演示板測試結果:(a) 效率,(b) 水平環路和垂直環路 1 之間的損耗差異,以及 (c) V在M1 導通期間紋波,輸出電流為 15 A。

pYYBAGOGyDGAZxLWAABqnljYmpA302.png

4%

熱回路 PCB ESR 和 ESL 與 MOSFET 的尺寸和位置

對于分立式設計,功率FET的布局和封裝尺寸也會對熱回路ESR和ESL產生重大影響。典型的半橋熱回路,功率FET M1和M2以及去耦電容C在在本節中建模和調查。如圖6所示,比較了常用的功率FET封裝尺寸和放置位置。表 2 顯示了每種情況下提取的 ESR 和 ESL。

案例(a)至(c)展示了三種流行的功率FET布局,分別采用5 mm×6 mm MOSFET。熱回路的物理長度決定了寄生阻抗。因此,案例 (b) 中的 90° 形狀放置和案例 (c) 中的 180° 形狀設備放置都會導致 ESR 降低 60% 和 ESL 降低 80%,因為與案例 (a) 中的環路路徑相比更短。由于 90° 形狀放置顯示出好處,因此根據案例 (b) 研究了更多案例,以進一步降低環路 ESR 和 ESL。在情況(d)中,5 mm × 6 mm MOSFET被兩個并聯的3.3 mm ×3.3 mm MOSFET取代。由于 MOSFET 占位面積更小,環路長度進一步縮短,從而將環路阻抗降低了 7%。在案例(e)中,當在熱回路層下放置接地層時,與案例(d)相比,熱回路ESR和ESL進一步降低了2%。原因是在接地層產生渦流,從而感應出相反的磁場并等效地降低環路阻抗。在情況(f)中,另一個熱回路層被構造為底層。如果將兩個并聯的MOSFET對稱放置在頂層和底層并通過過孔連接,則由于并聯阻抗,熱回路PCB ESR和ESL降低更為明顯。因此,在頂層和底層具有對稱 90° 形狀或 180° 形狀放置的較小尺寸器件可實現最低的 PCB ESR 和 ESL。

為了通過實驗驗證MOSFET布局的影響,使用了ADI公司的高效率、4開關同步降壓-升壓控制器演示板LT8390/DC2825A和LT8392/DC2626A.4如圖7a和圖7b所示,DC2825A具有直MOSFET布局,DC2626A具有90°形狀MOSFET布局。為了進行公平比較,兩款演示板配置了相同的MOSFET和去耦電容,并在36 V至12 V/10 A、300 kHz降壓操作下進行了測試。圖 7c 顯示了測試的 V在M1導通時刻的交流紋波。通過 90° 形狀的 MOSFET 放置,V在紋波具有較低的幅度和較高的諧振頻率,因此由于熱回路路徑較短,驗證了較小的PCB ESL。相反,由于更長的熱回路和更高的ESL,直MOSFET的放置導致更高的V在紋波幅度和較慢的諧振頻率。根據Cho和Szokusha研究中的EMI測試結果,較高的輸入電壓紋波也會導致更嚴重的EMI發射。4

poYBAGOGyDmAJj3HAAB-RCMEB9Q149.png

圖6.熱回路多氯聯苯型號:(a) 5 mm × 6 mm MOSFET,直線放置;(b) 5毫米×6毫米MOSFET,呈90°形狀放置;(c) 180°形狀放置的5毫米×6毫米MOSFET;(d) 兩個平行的3.3毫米×3.3毫米MOSFET,呈90°形狀放置;(e) 兩個平行的3.3毫米×3.3毫米MOSFET,與接地層呈90°形狀放置;(f) 在頂層和底層以 90° 形狀放置對稱的 3.3 毫米× 3.3 毫米 MOSFET。

pYYBAGOGyECARmtPAAY-m7MCfsE698.png

圖7.(a) LT8390/DC2825A 熱回路,具有直 MOSFET 放置;(b) LT8392/DC2626A 熱回路,放置 90° MOSFET;(c) 五在M1導通時的紋波波形。

poYBAGOGyFKARmPkAABCz5suGII478.png

圖8.熱回路 PCB 型號,(a) 五個 GND 過孔靠近 C在和 M2;(b) 14 個 GND 過孔放置在 C 之間在和 M2;(c) 根據(b)在GND上再放置6個過孔;(d) 根據 (c) 在 GND 區域再放置 9 個過孔。

熱回路 PCB ESR 和 ESL 與通孔貼裝

熱回路中的過孔位置對環路ESR和ESL也有關鍵影響。如圖8所示,對具有兩層PCB結構和直功率FET放置的熱回路進行了建模。FET放置在頂層,第二層是接地層。寄生阻抗Z2在C之間在GND焊盤和M2源焊盤是熱回路的一部分,并作為示例進行研究。Z2 提取自 FastHenry。表3總結并比較了模擬的ESR2和 ESL2具有不同的過孔位置。

通常,增加更多過孔會降低PCB寄生阻抗。然而,ESR的降低2和 ESL2與過孔數量不成線性比例。靠近端子焊盤的通孔可最明顯地降低 PCB ESR 和 ESL。因此,對于熱回路布局設計,必須將幾個關鍵過孔放置在靠近C焊盤的位置在和 MOSFET,以最大限度地降低 HF 環路阻抗。

pYYBAGOGyFyAcWP3AAA93mTwtCk834.png

結論

降低熱回路的寄生參數有助于提高電源效率、降低電壓振鈴并降低EMI。為了最小化PCB寄生參數,研究并比較了具有不同去耦電容位置、MOSFET尺寸和位置以及通孔布局的熱回路布局設計。較短的熱回路路徑、更小尺寸的 MOSFET、對稱的 90° 形狀和 180° 形狀 MOSFET 布局以及靠近關鍵元件的通孔有助于實現最低的熱回路 PCB ESR 和 ESL。

審核編輯:郭婷

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電源
    +關注

    關注

    184

    文章

    17704

    瀏覽量

    249963
  • 轉換器
    +關注

    關注

    27

    文章

    8694

    瀏覽量

    147086
  • PCB
    PCB
    +關注

    關注

    1

    文章

    1795

    瀏覽量

    13204
收藏 人收藏

    評論

    相關推薦

    開關電源的效率優化方法 如何定制開關電源解決方案

    開關電源效率。高品質的變壓器能夠有效地減少鐵損耗和銅損耗,不僅能提高功率轉換效率,還能有效延長開關電源的使用壽命。 優化開關元件的選擇 : 開關元件對于
    的頭像 發表于 11-29 16:56 ?345次閱讀

    如何通過等效串聯電阻(ESR)和等效串聯電感(ESL)優化回路布局設計

    對于功率轉換器,寄生參數最小回路PCB布局能夠改善能效比,降低電壓振鈴,并減少電磁干擾(EMI)。本文討論如何
    的頭像 發表于 11-25 10:36 ?599次閱讀

    AN_1149開關電源布局指南

    電子發燒友網站提供《AN_1149開關電源布局指南.pdf》資料免費下載
    發表于 08-26 14:36 ?2次下載
    AN_1149<b class='flag-5'>開關電源</b><b class='flag-5'>布局</b>指南

    最小化啟動期間的輸出紋波

    電子發燒友網站提供《最小化啟動期間的輸出紋波.pdf》資料免費下載
    發表于 08-26 11:44 ?0次下載
    <b class='flag-5'>最小化</b>啟動期間的輸出紋波

    反激式開關電源反饋回路分析

    了廣泛應用。然而,要確保反激式開關電源的穩定運行和高效性能,反饋回路的設計與分析至關重要。 一、反激式開關電源概述 1.1 工作原理 反激式開關電源
    的頭像 發表于 07-29 10:24 ?1517次閱讀

    開關電源PCB布局優化,人人都該懂的“黃金法則”是什么?

    問:開關電源布局的黃金法則優化電路板布局開關電源設計中的一個關鍵。良好的布局可確保
    發表于 07-01 17:11

    如何最大程度降低開關電源中的寄生參數

    (EMI)。此外,導致 EMI 的因素同樣也會降低效率,從而削弱開關電源關鍵的能效優勢。 為了避免這些問題,設計人員在配置“回路”(電源電路中發生快速
    的頭像 發表于 05-05 15:53 ?775次閱讀
    如何最大程度降低<b class='flag-5'>開關電源</b>中的寄生參數

    關于窗口最小化的實現

    我想實現一個按鈕然后窗口最小化,為什么一運行就直接最小化了呢
    發表于 04-16 10:56

    開關電源的噪聲是如何產生的?

    產生的電流及電壓,可通過兩個公式求得。 此振鈴會作為高頻開關噪聲帶來各種影響。雖然有采取相應的措施,但由于無法從電源IC處去除安裝電路板的寄生分量,因此只能通過
    發表于 04-02 10:28

    用于最小化個人計算機開關電源的外部組件系統TPS3510 TPS3511數據表

    電子發燒友網站提供《用于最小化個人計算機開關電源的外部組件系統TPS3510 TPS3511數據表.pdf》資料免費下載
    發表于 03-13 14:29 ?1次下載
    用于<b class='flag-5'>最小化</b>個人計算機<b class='flag-5'>開關電源</b>的外部組件系統TPS3510 TPS3511數據表

    ?開關電源PCB經驗分享

    ?開關電源PCB經驗分享 其實對于一個開關電源工程師而言,PCB的繪制其實是對一款產品的影響至關重要的部分,如果不能很好地Layout的話,整個電源
    發表于 03-04 09:18

    開關電源噪聲如何消除

    開關電源因其高效率和小型設計而在現代電子設備中廣泛應用。然而,隨之而來的噪聲問題卻可能影響電源性能,并對其他電路造成干擾。以下是針對開關電源噪聲的一些對策:
    的頭像 發表于 02-05 09:51 ?2269次閱讀
    <b class='flag-5'>開關電源</b>噪聲如何消除

    開關電源差模傳導發射分析

    影響開關電源差模傳導發射的主要是濾波電容的等效串聯電阻ESR和等效串聯電感ESL
    的頭像 發表于 01-22 09:36 ?1200次閱讀
    <b class='flag-5'>開關電源</b>差模傳導發射分析

    從三回路模型看開關電源共模干擾的解決之道

    開關電源共模電流模型可以用下面三個回路簡單說明。在開關管共模電壓的驅動下,形成輸入回路、輸出回路
    發表于 01-21 09:47 ?1219次閱讀
    從三<b class='flag-5'>回路</b>模型看<b class='flag-5'>開關電源</b>共模干擾的解決之道

    開關電源電磁兼容設計中的布局與布線技巧

    開關電源在工作過程中會產生電磁干擾(EMI),這種干擾信號會對周圍的電子設備產生不良影響。為了減小電磁干擾,開關電源布局與布線設計至關重要。本文將對開關電源電磁兼容設計中的
    的頭像 發表于 12-30 15:25 ?748次閱讀
    主站蜘蛛池模板: 好看的电影网站亚洲一区| 国产精品免费视频能看| 中文无码有码亚洲 欧美| 67194成在线观看免费| 99热6精品视频6| 扒开 浓密 毛| 国产精品永久免费| 狠狠色色综合网站| 甜涩性爱下载| 肉奴隷 赤坂丽在线播放| 一品探花论坛| 麻豆精品传媒卡一卡二传媒短视频| 99国产精品免费视频| 亚洲九九视频| 国产曰韩无码亚洲视频| 欧美高清vivoesosexo10| 忘忧草在线影院www日本| 18禁裸乳无遮挡免费网站 | 99国产精品综合AV无码| 国产高清视频免费在线观看| 韩国无遮羞禁动漫在线观看| 精品含羞草免费视频观看| 伦理片a在线线2| 亚洲免费在线视频| 国产人妻系列无码专区97SS| 四虎影院2022| 国产成人久久精品AV| 人妻夜夜爽99麻豆AV| 手机在线观看毛片| 陈红下面又紧又小好爽| 麻豆免费高清完整版| 一二三四在线观看高清电视剧| 国产三级多多影院| 桃花色影院| 啊灬啊别停灬用力啊在线观看视频| 黑人巨大交牲老太| 天堂网久久| 国产超嫩一线天在线播放| 欧美eee114| 97久久国产露脸精品国产| 成年女人免费影院播放|