研究背景
作為鋰離子電池正極材料,LiCoO2(LCO)具有振實密度大、理論容量高、充電截止電壓高和鋰離子/電子電導率較大等優勢,在5G市場有著廣泛應用。在與之匹配的負極材料中,傳統石墨負極由于擴散動力學緩慢、Li+界面傳輸勢壘高、界面電阻大、以及超低溫下固體電解質界面層不穩定,最低使用溫度僅為-20 °C。相比之下,鋰金屬具有最低電化學電勢、更低反應能壘,有望作為低溫環境LCO電池的理想負極材料。但需要注意得是,低溫LCO電池的開發仍然受到商業電解質低溫失效問題的限制,如Li+飽和濃度低,電極/電解質界面不穩定,Li+電導率和擴散系數小等。
因此,開發低溫高性能Li//LCO電池的研究重點是提高電解質的低溫性能,常見策略主要包括液化氣體電解質、共溶劑電解質、添加稀釋劑、使用高度氟化溶劑等,但液化氣體電解質設計復雜,難以商業化并存在安全隱患,助溶劑和稀釋添加劑的使用會限制Li+配位,降低電解質工作電壓,而高氟化非極性溶劑的Li+電導率及飽和濃度較低。研究發現,LiF具備低Li+擴散勢壘(0.17eV)和大帶隙(13.6 eV),研究者提出在LCO正極上構筑富LiF的CEI層來促進Li+遷移,防止電子穿過CEI進行副反應,來增強低溫下Li//LCO電池性能。然而,人工構筑的LiF層往往導致LCO正極表面分布不均勻且較厚,同時電解質分解過程產生LiF基團,導致低溫下Li+飽和濃度迅速下降,影響電池低溫性能。因此,需要進一步進行電解質改性以構筑厚度適中、均勻可控CEI層,實現低溫高性能Li//LCO電池。
成果簡介
近期,哈爾濱工業大學的何偉東教授和劉遠鵬副教授在EES上發表了題為“Reconstruction of LiF-rich interphases through an anti-freezing electrolyte for ultralow-temperature LiCoO2batteries”的文章。該工作以超低熔點(-132 °C)和超低粘度(0.30 Pa s)的甲酸異丁酯(IF)為防凍劑,設計了一種低配位數(0.07)、高去溶劑化能(27.97 eV)和高Li+飽和濃度(1.40′10-10mol s-1)的電解質,Li+在其中可以高效可逆傳輸,且具有豐富含氟自由基,有助于形成富含LiF的穩定SEI膜和CEI膜,Li//LCO電池采用該電解液,在-70 °C下表現出前所未有的性能,循環170次中的容量穩定保持在110 mAh g-1。這項工作為超低溫LCO電池的開發提供了新契機,對開發極端低溫條件下鋰離子電池具有重要指導意義。
圖文導讀
圖1.(a-c) EC+DMC電解質機理圖、Li+溶劑化結構和溶劑化能和遷移路徑;(d-f) 45% IF電解質機理圖、Li+溶劑化結構和溶劑化能和遷移路徑;(g) 特定溫度下,不同電解質的Li+飽和濃度;(h) 不同電解質離子電導率;(i)文獻對比。
電解質設計和物理性質。作者設計在LiDFOB/FEC/DMS氟硫電解質體系中加入45%甲酸異丁酯(IF),改善電解質低溫性能。實驗結果發現,在-70 ℃靜置30天后,傳統商業EC+DMC電解液凍結,而45% IF電解液沒有出現沉積物或相分離,且保持高流動性。同時,IF電解液形成富含LiF的均勻SEI和CEI層,構筑了穩定電極/電解質界面,實現Li+高效傳輸。
圖1研究了不同電解質的Li+溶劑化結構、去溶劑化能和遷移路徑等,分析結果可知45% IF電解質去溶劑化能為27.97 eV,遠高于EC+DMC電解質(50.27 eV),表明其Li+遷移能力更強。此外,45% IF電解質具有典型接觸對(CIP)結構和低配位數(CN),其中Li+溶劑化殼層同時含有DFOB分子和DMS分子,且FEC和IF分子幾乎不與Li+配位,這有利于形成低溶劑化、高去溶劑化能、高Li+電導率、大擴散系數的獨特電解質結構,低溫下具有高Li+飽和濃度。
與文獻報道大多數低溫電解質相比,IF電解質體系的物理和化學性能,如Li+電導率、遷移數、粘度、凝固點、浸潤性和電化學窗口等均得到極大改善,使其在低溫下具有更高容量和更長循環性能。
圖2. Li//LCO電化學性能。(a)不同溫度下電池性能;(b)倍率性能;(c)循環性能;(d-f)低溫循環性能;(g)低溫充放電曲線;(h)低溫電池工作光學照片;(i)低溫電池文獻對比。
低溫電化學性能測試。為分析電池低溫行為,作者組裝面容量為0.82 mAh cm-2和2.74 mAh cm-2的Li//LCO電池,在實驗和實際條件下,分別研究了不同電解質的負極穩定性。室溫下,45% IF電解質和傳統EC+DMC電解質展現出相似電化學行為,說明45% IF電解液具有高電化學活性和電壓穩定性。低溫下,EC+DMC電解液在-20 °C即出現明顯電壓偏移,氧化還原峰在-40 °C處消失,而45% IF電解液在低溫下均顯示出較高氧化還原峰且極化較低。對于45% IF電解質,形成富含LiF的SEI和CEI層顯著提高電極/電解質界面穩定性,而電解質弱溶劑化作用、高去溶劑化能和高Li+飽和濃度則進一步促進Li+在-70 °C下平穩遷移行為。梯度溫度充放電測試實驗表明,45% IF電解液具有更寬使用溫度范圍(60 °C至-70 °C),優異倍率性能和低溫循環性能(-76 °C),優于文獻中報道的同類型低溫LCO電池。
圖3.SEI和CEI成分組成。(a-d) EC+DMC電解質嵌鋰行為示意圖、SEM圖、光學數字顯微圖;(e-h) 45% IF電解質嵌鋰行為示意圖、SEM圖、光學顯微圖;(i, k)不同電解質形貌演變有限元模擬;(j, l) -20°C時,不同電解質Li//Li對稱電池;(m, n) 不同電解質中鋰沉積的原位光學照片。
SEI和CEI成分分析。為深入了解45% IF電解質的低溫工作機制,對LCO正極和Li負極表面CEI和SEI成分進行分析。首先利用掃描電鏡(SEM)、低溫聚焦離子束(cryo-FIB)和光學數字顯微鏡(OSEM)研究了-20 °C時金屬鋰在不同電解液中循環50次后的表面和截面形貌。結果發現,相比于傳統電解液在-20 °C下容易形成鋰枝晶,45% IF電解質中鋰金屬表面呈橢圓形,具有致密無枝晶和平坦界面結構,與鋰金屬基底緊密接觸,從而大大提升Li+電導率。光學數字顯微鏡反映了低溫循環后Li金屬負極表面粗糙度,觀察發現EC+DMC電解液鋰金屬負極表面在6-8 mm高度處波動較大,而45% IF電解液的負極表面深度為~4 mm,表明在-20 °C時,Li+沉積相對穩定,負極/電解液界面平滑,有利于減小SEI生長,并抑制死鋰的形成,從而改善低溫下電池循環性能。
圖4. 電解質結構和轉變的理論和實驗分析。(a, d) 不同電解質分子模型;(b, e) 計算得徑向分布函數;(c. f) 拉曼光譜;(g)Li+與不同電解質組分間的配位數;(h) 原位拉曼;(i-k)7Li、13C和19F的核磁共振譜。
電解質低溶劑化及原位表征。最后,作者通過計算模擬、拉曼光譜和傅里葉變換紅外光譜(FT-IR)研究了電解質溶劑化結構。采用經典分子動力學(MD)模擬和RDF分別對EC+DMC和45% IF電解質中的SSIP和CIP結構進行分析。圖4g顯示了Li+和不同電解質組分之間的配位數,MD和RDF數據分析表明,45% IF電解質表現出典型CIP結構和低CN,其中Li+溶劑化殼層由DMS和DFOB組成,平均CN為3.0 DMS氧/Li+和0.35 DFOB氧/Li+,且IF和FEC是自由溶劑分子,幾乎不與Li+配位,因此形成低配位電解質。
使用核磁共振(NMR)研究反應后商業電解質和45% IF電解質殘留物組成,如圖4i和k所示,19F譜中121.93 ppm、154.38 ppm和155.72 ppm位移處的峰對應于LiF、BF4和B-F氟化基團,3.26 ppm處單峰對應于7Li光譜LiF,表明形成富含LiF的SEI層,有利于改善低溫下Li//LCO電池性能。
總 結
作者通過在LiDFOB/FEC/DMS氟硫電解質體系中引入甲酸異丁酯(IF)防凍劑,得到了具有優異物理化學性能的低溶劑化(CN=0.07)、高去溶劑化能(27.97 eV)和高Li+飽和濃度(1.40′10-10mol s-1)電解質。該電解質能夠形成穩定且富含LiF的SEI和CEI層,具有大的Li+電導率和擴散系數,以及寬工作溫度(-70 °C~60 °C)。一系列原位光學顯微鏡、分子動力學模擬以及電化學實驗結果表明,新型電解質有助于實現低溫條件下Li+在鋰金屬負極上均勻沉積,實現長壽命Li//Li對稱電池(4300 h)。此外,在-70 °C條件下,以該電解質組成的Li//LCO電池循環170圈仍具有110 mAh g-1的放電容量的優異性能。本工作基于高效電解質設計,開發出實用型低溫Li//LCO電池體系,對低溫電池實際使用具有重要指導意義。
審核編輯 :李倩
-
電化學
+關注
關注
1文章
322瀏覽量
20589 -
電解質
+關注
關注
6文章
810瀏覽量
20049
原文標題:哈工大EES:加點“防凍液”,實現-70 °C低溫LiCoO2電池
文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論