色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

為什么使用FPGA?它可以被替代嘛?

jf_78858299 ? 來源:智能計算芯世界 ? 作者:智能計算芯世界 ? 2023-03-21 11:04 ? 次閱讀

最近幾年,FPGA這個概念越來越多地出現(xiàn)。例如,比特幣挖礦,就有使用基于FPGA的礦機。還有,之前微軟表示,將在數(shù)據(jù)中心里,使用FPGA“代替”CPU,等等。

其實,對于專業(yè)人士來說,F(xiàn)PGA并不陌生,它一直都被廣泛使用。但是,大部分人還不是太了解它,對它有很多疑問——FPGA到底是什么?為什么要使用它?相比 CPU、GPUASIC(專用芯片),F(xiàn)PGA有什么特點?

今天,帶著這一系列的問題,我們一起來——揭秘FPGA。

為什么使用FPGA?

眾所周知,通用處理器(CPU)的摩爾定律已入暮年,而機器學習和 Web 服務的規(guī)模卻在指數(shù)級增長。

人們使用定制硬件來加速常見的計算任務,然而日新月異的行業(yè)又要求這些定制的硬件可被重新編程來執(zhí)行新類型的計算任務。

FPGA 正是一種硬件可重構(gòu)的體系結(jié)構(gòu)。它的英文全稱是Field Programmable Gate Array,中文名是現(xiàn)場可編程門陣列。

FPGA常年來被用作專用芯片(ASIC)的小批量替代品,然而近年來在微軟、百度等公司的數(shù)據(jù)中心大規(guī)模部署,以同時提供強大的計算能力和足夠的靈活性。

▲不同體系結(jié)構(gòu)性能和靈活性的比較

FPGA 為什么快?「都是同行襯托得好」。

CPU、GPU 都屬于馮·諾依曼結(jié)構(gòu),指令譯碼執(zhí)行、共享內(nèi)存。FPGA 之所以比 CPU 甚至 GPU 能效高,本質(zhì)上是無指令、無需共享內(nèi)存的體系結(jié)構(gòu)帶來的福利。

馮氏結(jié)構(gòu)中,由于執(zhí)行單元(如 CPU 核)可能執(zhí)行任意指令,就需要有指令存儲器、譯碼器、各種指令的運算器、分支跳轉(zhuǎn)處理邏輯。由于指令流的控制邏輯復雜,不可能有太多條獨立的指令流,因此 GPU 使用 SIMD(單指令流多數(shù)據(jù)流)來讓多個執(zhí)行單元以同樣的步調(diào)處理不同的數(shù)據(jù),CPU 也支持 SIMD 指令。

而 FPGA 每個邏輯單元的功能在重編程(燒寫)時就已經(jīng)確定,不需要指令。

馮氏結(jié)構(gòu)中使用內(nèi)存有兩種作用。一是保存狀態(tài),二是在執(zhí)行單元間通信

由于內(nèi)存是共享的,就需要做訪問仲裁;為了利用訪問局部性,每個執(zhí)行單元有一個私有的緩存,這就要維持執(zhí)行部件間緩存的一致性。

對于保存狀態(tài)的需求,F(xiàn)PGA 中的寄存器和片上內(nèi)存(BRAM)是屬于各自的控制邏輯的,無需不必要的仲裁和緩存。

對于通信的需求,F(xiàn)PGA 每個邏輯單元與周圍邏輯單元的連接在重編程(燒寫)時就已經(jīng)確定,并不需要通過共享內(nèi)存來通信。

說了這么多三千英尺高度的話,F(xiàn)PGA 實際的表現(xiàn)如何呢?我們分別來看計算密集型任務和通信密集型任務。

計算密集型任務的例子包括矩陣運算、圖像處理、機器學習、壓縮、非對稱加密、Bing 搜索的排序等。這類任務一般是 CPU 把任務卸載(offload)給 FPGA 去執(zhí)行。對這類任務,目前我們正在用的 Altera(似乎應該叫 Intel 了,我還是習慣叫 Altera)Stratix V FPGA 的整數(shù)乘法運算性能與 20 核的 CPU 基本相當,浮點乘法運算性能與 8 核的 CPU 基本相當,而比 GPU 低一個數(shù)量級。我們即將用上的下一代 FPGA,Stratix 10,將配備更多的乘法器和硬件浮點運算部件,從而理論上可達到與現(xiàn)在的頂級 GPU 計算卡旗鼓相當?shù)挠嬎隳芰Α?/p>

圖片

▲FPGA 的整數(shù)乘法運算能力(估計值,不使用 DSP,根據(jù)邏輯資源占用量估計)

圖片

▲FPGA 的浮點乘法運算能力(估計值,float16 用軟核,float 32 用硬核)

在數(shù)據(jù)中心,F(xiàn)PGA 相比 GPU 的核心優(yōu)勢在于延遲。像 Bing 搜索排序這樣的任務,要盡可能快地返回搜索結(jié)果,就需要盡可能降低每一步的延遲。

如果使用 GPU 來加速,要想充分利用 GPU 的計算能力,batch size 就不能太小,延遲將高達毫秒量級。

使用 FPGA 來加速的話,只需要微秒級的 PCIe 延遲(我們現(xiàn)在的 FPGA 是作為一塊 PCIe 加速卡)。

未來 Intel 推出通過 QPI 連接的 Xeon + FPGA 之后,CPU 和 FPGA 之間的延遲更可以降到 100 納秒以下,跟訪問主存沒什么區(qū)別了。

FPGA 為什么比 GPU 的延遲低這么多?

這本質(zhì)上是體系結(jié)構(gòu)的區(qū)別。FPGA 同時擁有流水線并行和數(shù)據(jù)并行,而 GPU 幾乎只有數(shù)據(jù)并行(流水線深度受限)。

例如處理一個數(shù)據(jù)包有 10 個步驟,F(xiàn)PGA 可以搭建一個 10 級流水線,流水線的不同級在處理不同的數(shù)據(jù)包,每個數(shù)據(jù)包流經(jīng) 10 級之后處理完成。每處理完成一個數(shù)據(jù)包,就能馬上輸出。

而 GPU 的數(shù)據(jù)并行方法是做 10 個計算單元,每個計算單元也在處理不同的數(shù)據(jù)包,然而所有的計算單元必須按照統(tǒng)一的步調(diào),做相同的事情(SIMD,Single Instruction Multiple Data)。這就要求 10 個數(shù)據(jù)包必須一起輸入、一起輸出,輸入輸出的延遲增加了。

當任務是逐個而非成批到達的時候,流水線并行比數(shù)據(jù)并行可實現(xiàn)更低的延遲。因此對流式計算的任務,F(xiàn)PGA 比 GPU 天生有延遲方面的優(yōu)勢。

圖片

計算密集型任務,CPU、GPU、FPGA、ASIC 的數(shù)量級比較(以 16 位整數(shù)乘法為例,數(shù)字僅為數(shù)量級的估計。

ASIC 專用芯片在吞吐量、延遲和功耗三方面都無可指摘,但微軟并沒有采用,出于兩個原因:

數(shù)據(jù)中心的計算任務是靈活多變的,而 ASIC 研發(fā)成本高、周期長。好不容易大規(guī)模部署了一批某種神經(jīng)網(wǎng)絡(luò)的加速卡,結(jié)果另一種神經(jīng)網(wǎng)絡(luò)更火了,錢就白費了。FPGA 只需要幾百毫秒就可以更新邏輯功能。FPGA 的靈活性可以保護投資,事實上,微軟現(xiàn)在的 FPGA 玩法與最初的設(shè)想大不相同。

數(shù)據(jù)中心是租給不同的租戶使用的,如果有的機器上有神經(jīng)網(wǎng)絡(luò)加速卡,有的機器上有 Bing 搜索加速卡,有的機器上有網(wǎng)絡(luò)虛擬化加速卡,任務的調(diào)度和服務器的運維會很麻煩。使用 FPGA 可以保持數(shù)據(jù)中心的同構(gòu)性。

接下來看通信密集型任務。

相比計算密集型任務,通信密集型任務對每個輸入數(shù)據(jù)的處理不甚復雜,基本上簡單算算就輸出了,這時通信往往會成為瓶頸。對稱加密、防火墻、網(wǎng)絡(luò)虛擬化都是通信密集型的例子。

圖片

▲通信密集型任務,CPU、GPU、FPGA、ASIC 的數(shù)量級比較(以 64 字節(jié)網(wǎng)絡(luò)數(shù)據(jù)包處理為例,數(shù)字僅為數(shù)量級的估計)

對通信密集型任務,F(xiàn)PGA 相比 CPU、GPU 的優(yōu)勢就更大了。

從吞吐量上講,F(xiàn)PGA 上的收發(fā)器可以直接接上 40 Gbps 甚至 100 Gbps 的網(wǎng)線,以線速處理任意大小的數(shù)據(jù)包;而 CPU 需要從網(wǎng)卡把數(shù)據(jù)包收上來才能處理,很多網(wǎng)卡是不能線速處理 64 字節(jié)的小數(shù)據(jù)包的。盡管可以通過插多塊網(wǎng)卡來達到高性能,但 CPU 和主板支持的 PCIe 插槽數(shù)量往往有限,而且網(wǎng)卡、交換機本身也價格不菲。

從延遲上講,網(wǎng)卡把數(shù)據(jù)包收到 CPU,CPU 再發(fā)給網(wǎng)卡,即使使用 DPDK 這樣高性能的數(shù)據(jù)包處理框架,延遲也有 4~5 微秒。更嚴重的問題是,通用 CPU 的延遲不夠穩(wěn)定。例如當負載較高時,轉(zhuǎn)發(fā)延遲可能升到幾十微秒甚至更高(如下圖所示);現(xiàn)代操作系統(tǒng)中的時鐘中斷和任務調(diào)度也增加了延遲的不確定性。

圖片

ClickNP(FPGA)與 Dell S6000 交換機(商用交換機芯片)、Click+DPDK(CPU)和 Linux(CPU)的轉(zhuǎn)發(fā)延遲比較,error bar 表示 5% 和 95%。來源:[5]

雖然 GPU 也可以高性能處理數(shù)據(jù)包,但 GPU 是沒有網(wǎng)口的,意味著需要首先把數(shù)據(jù)包由網(wǎng)卡收上來,再讓 GPU 去做處理。這樣吞吐量受到 CPU 和/或網(wǎng)卡的限制。GPU 本身的延遲就更不必說了。

那么為什么不把這些網(wǎng)絡(luò)功能做進網(wǎng)卡,或者使用可編程交換機呢?ASIC 的靈活性仍然是硬傷。

盡管目前有越來越強大的可編程交換機芯片,比如支持 P4 語言的 Tofino,ASIC 仍然不能做復雜的有狀態(tài)處理,比如某種自定義的加密算法

綜上,在數(shù)據(jù)中心里 FPGA 的主要優(yōu)勢是穩(wěn)定又極低的延遲,適用于流式的計算密集型任務和通信密集型任務。

微軟部署FPGA的實踐

2016 年 9 月,《連線》(Wired)雜志發(fā)表了一篇《微軟把未來押注在 FPGA 上》的報道 [3],講述了 Catapult 項目的前世今生。

緊接著,Catapult 項目的老大 Doug Burger 在 Ignite 2016 大會上與微軟 CEO Satya Nadella 一起做了 FPGA 加速機器翻譯的演示。

演示的總計算能力是 103 萬 T ops,也就是 1.03 Exa-op,相當于 10 萬塊頂級 GPU 計算卡。一塊 FPGA(加上板上內(nèi)存和網(wǎng)絡(luò)接口等)的功耗大約是 30 W,僅增加了整個服務器功耗的十分之一。

圖片

▲Ignite 2016 上的演示:每秒 1 Exa-op (10^18) 的機器翻譯運算能力

微軟部署 FPGA 并不是一帆風順的。對于把 FPGA 部署在哪里這個問題,大致經(jīng)歷了三個階段:

  • 專用的 FPGA 集群,里面插滿了 FPGA
  • 每臺機器一塊 FPGA,采用專用網(wǎng)絡(luò)連接
  • 每臺機器一塊 FPGA,放在網(wǎng)卡和交換機之間,共享服務器網(wǎng)絡(luò)

這種方式有幾個問題:

  • 不同機器的 FPGA 之間無法通信,F(xiàn)PGA 所能處理問題的規(guī)模受限于單臺服務器上 FPGA 的數(shù)量;
  • 數(shù)據(jù)中心里的其他機器要把任務集中發(fā)到這個機柜,構(gòu)成了 in-cast,網(wǎng)絡(luò)延遲很難做到穩(wěn)定。
  • FPGA 專用機柜構(gòu)成了單點故障,只要它一壞,誰都別想加速了;
  • 裝 FPGA 的服務器是定制的,冷卻、運維都增加了麻煩。

FPGA 采用 Stratix V D5,有 172K 個 ALM,2014 個 M20K 片上內(nèi)存,1590 個 DSP。板上有一個 8GB DDR3-1333 內(nèi)存,一個 PCIe Gen3 x8 接口,兩個 10 Gbps 網(wǎng)絡(luò)接口。一個機柜之間的 FPGA 采用專用網(wǎng)絡(luò)連接,一組 10G 網(wǎng)口 8 個一組連成環(huán),另一組 10G 網(wǎng)口 6 個一組連成環(huán),不使用交換機。

這樣一個 1632 臺服務器、1632 塊 FPGA 的集群,把 Bing 的搜索結(jié)果排序整體性能提高到了 2 倍(換言之,節(jié)省了一半的服務器)。

FPGA 在 Bing 的部署取得了成功,Catapult 項目繼續(xù)在公司內(nèi)擴張。

微軟內(nèi)部擁有最多服務器的,就是云計算 Azure 部門了。

Azure 部門急需解決的問題是網(wǎng)絡(luò)和存儲虛擬化帶來的開銷。Azure 把虛擬機賣給客戶,需要給虛擬機的網(wǎng)絡(luò)提供防火墻、負載均衡、隧道、NAT 等網(wǎng)絡(luò)功能。由于云存儲的物理存儲跟計算節(jié)點是分離的,需要把數(shù)據(jù)從存儲節(jié)點通過網(wǎng)絡(luò)搬運過來,還要進行壓縮和加密。

在 1 Gbps 網(wǎng)絡(luò)和機械硬盤的時代,網(wǎng)絡(luò)和存儲虛擬化的 CPU 開銷不值一提。隨著網(wǎng)絡(luò)和存儲速度越來越快,網(wǎng)絡(luò)上了 40 Gbps,一塊 SSD 的吞吐量也能到 1 GB/s,CPU 漸漸變得力不從心了。

例如 Hyper-V 虛擬交換機只能處理 25 Gbps 左右的流量,不能達到 40 Gbps 線速,當數(shù)據(jù)包較小時性能更差;AES-256 加密和 SHA-1 簽名,每個 CPU 核只能處理 100 MB/s,只是一塊 SSD 吞吐量的十分之一。

為了加速網(wǎng)絡(luò)功能和存儲虛擬化,微軟把 FPGA 部署在網(wǎng)卡和交換機之間。

如下圖所示,每個 FPGA 有一個 4 GB DDR3-1333 DRAM,通過兩個 PCIe Gen3 x8 接口連接到一個 CPU socket(物理上是 PCIe Gen3 x16 接口,因為 FPGA 沒有 x16 的硬核,邏輯上當成兩個 x8 的用)。物理網(wǎng)卡(NIC)就是普通的 40 Gbps 網(wǎng)卡,僅用于宿主機與網(wǎng)絡(luò)之間的通信。

圖片

▲Azure 服務器部署 FPGA 的架構(gòu)。

FPGA(SmartNIC)對每個虛擬機虛擬出一塊網(wǎng)卡,虛擬機通過 SR-IOV 直接訪問這塊虛擬網(wǎng)卡。原本在虛擬交換機里面的數(shù)據(jù)平面功能被移到了 FPGA 里面,虛擬機收發(fā)網(wǎng)絡(luò)數(shù)據(jù)包均不需要 CPU 參與,也不需要經(jīng)過物理網(wǎng)卡(NIC)。這樣不僅節(jié)約了可用于出售的 CPU 資源,還提高了虛擬機的網(wǎng)絡(luò)性能(25 Gbps),把同數(shù)據(jù)中心虛擬機之間的網(wǎng)絡(luò)延遲降低了 10 倍。

圖片

▲網(wǎng)絡(luò)虛擬化的加速架構(gòu)。來源:[6]

這就是微軟部署 FPGA 的第三代架構(gòu),也是目前「每臺服務器一塊 FPGA」大規(guī)模部署所采用的架構(gòu)。

FPGA 復用主機網(wǎng)絡(luò)的初心是加速網(wǎng)絡(luò)和存儲,更深遠的影響則是把 FPGA 之間的網(wǎng)絡(luò)連接擴展到了整個數(shù)據(jù)中心的規(guī)模,做成真正 cloud-scale 的「超級計算機」。

第二代架構(gòu)里面,F(xiàn)PGA 之間的網(wǎng)絡(luò)連接局限于同一個機架以內(nèi),F(xiàn)PGA 之間專網(wǎng)互聯(lián)的方式很難擴大規(guī)模,通過 CPU 來轉(zhuǎn)發(fā)則開銷太高。

第三代架構(gòu)中,F(xiàn)PGA 之間通過 LTL (Lightweight Transport Layer) 通信。同一機架內(nèi)延遲在 3 微秒以內(nèi);8 微秒以內(nèi)可達 1000 塊 FPGA;20 微秒可達同一數(shù)據(jù)中心的所有 FPGA。第二代架構(gòu)盡管 8 臺機器以內(nèi)的延遲更低,但只能通過網(wǎng)絡(luò)訪問 48 塊 FPGA。為了支持大范圍的 FPGA 間通信,第三代架構(gòu)中的 LTL 還支持 PFC 流控協(xié)議和 DCQCN 擁塞控制協(xié)議。

圖片

▲縱軸:LTL 的延遲,橫軸:可達的 FPGA 數(shù)量。來源:[4]

圖片

▲FPGA 內(nèi)的邏輯模塊關(guān)系,其中每個 Role 是用戶邏輯(如 DNN 加速、網(wǎng)絡(luò)功能加速、加密),外面的部分負責各個 Role 之間的通信及 Role 與外設(shè)之間的通信。來源:[4]

圖片

▲FPGA 構(gòu)成的數(shù)據(jù)中心加速平面,介于網(wǎng)絡(luò)交換層(TOR、L1、L2)和傳統(tǒng)服務器軟件(CPU 上運行的軟件)之間。來源:[4]

通過高帶寬、低延遲的網(wǎng)絡(luò)互聯(lián)的 FPGA 構(gòu)成了介于網(wǎng)絡(luò)交換層和傳統(tǒng)服務器軟件之間的數(shù)據(jù)中心加速平面。

除了每臺提供云服務的服務器都需要的網(wǎng)絡(luò)和存儲虛擬化加速,F(xiàn)PGA 上的剩余資源還可以用來加速 Bing 搜索、深度神經(jīng)網(wǎng)絡(luò)(DNN)等計算任務。

對很多類型的應用,隨著分布式 FPGA 加速器的規(guī)模擴大,其性能提升是超線性的。

例如 CNN inference,當只用一塊 FPGA 的時候,由于片上內(nèi)存不足以放下整個模型,需要不斷訪問 DRAM 中的模型權(quán)重,性能瓶頸在 DRAM;如果 FPGA 的數(shù)量足夠多,每塊 FPGA 負責模型中的一層或者一層中的若干個特征,使得模型權(quán)重完全載入片上內(nèi)存,就消除了 DRAM 的性能瓶頸,完全發(fā)揮出 FPGA 計算單元的性能。

當然,拆得過細也會導致通信開銷的增加。把任務拆分到分布式 FPGA 集群的關(guān)鍵在于平衡計算和通信。

圖片

▲從神經(jīng)網(wǎng)絡(luò)模型到 HaaS 上的 FPGA。利用模型內(nèi)的并行性,模型的不同層、不同特征映射到不同 FPGA。來源:[4]

在 MICRO'16 會議上,微軟提出了 Hardware as a Service (HaaS) 的概念,即把硬件作為一種可調(diào)度的云服務,使得 FPGA 服務的集中調(diào)度、管理和大規(guī)模部署成為可能。

圖片

▲Hardware as a Service (HaaS)。來源:[4]

從第一代裝滿 FPGA 的專用服務器集群,到第二代通過專網(wǎng)連接的 FPGA 加速卡集群,到目前復用數(shù)據(jù)中心網(wǎng)絡(luò)的大規(guī)模 FPGA 云,三個思想指導我們的路線:

硬件和軟件不是相互取代的關(guān)系,而是合作的關(guān)系;

  • 必須具備靈活性,即用軟件定義的能力;
  • 必須具備可擴放性(scalability)。

FPGA在云計算中的角色

最后談一點我個人對 FPGA 在云計算中角色的思考。作為三年級博士生,我在微軟亞洲研究院的研究試圖回答兩個問題:

FPGA 在云規(guī)模的網(wǎng)絡(luò)互連系統(tǒng)中應當充當怎樣的角色?如何高效、可擴放地對 FPGA + CPU 的異構(gòu)系統(tǒng)進行編程?

我對 FPGA 業(yè)界主要的遺憾是,F(xiàn)PGA 在數(shù)據(jù)中心的主流用法,從除微軟外的互聯(lián)網(wǎng)巨頭,到兩大 FPGA 廠商,再到學術(shù)界,大多是把 FPGA 當作跟 GPU 一樣的計算密集型任務的加速卡。然而 FPGA 真的很適合做 GPU 的事情嗎?

前面講過,F(xiàn)PGA 和 GPU 最大的區(qū)別在于體系結(jié)構(gòu),F(xiàn)PGA 更適合做需要低延遲的流式處理,GPU 更適合做大批量同構(gòu)數(shù)據(jù)的處理。

由于很多人打算把 FPGA 當作計算加速卡來用,兩大 FPGA 廠商推出的高層次編程模型也是基于 OpenCL,模仿 GPU 基于共享內(nèi)存的批處理模式。CPU 要交給 FPGA 做一件事,需要先放進 FPGA 板上的 DRAM,然后告訴 FPGA 開始執(zhí)行,F(xiàn)PGA 把執(zhí)行結(jié)果放回 DRAM,再通知 CPU 去取回。

CPU 和 FPGA 之間本來可以通過 PCIe 高效通信,為什么要到板上的 DRAM 繞一圈?也許是工程實現(xiàn)的問題,我們發(fā)現(xiàn)通過 OpenCL 寫 DRAM、啟動 kernel、讀 DRAM 一個來回,需要 1.8 毫秒。而通過 PCIe DMA 來通信,卻只要 1~2 微秒。

圖片

OpenCL 里面多個 kernel 之間的通信就更夸張了,默認的方式也是通過共享內(nèi)存。

本文開篇就講,F(xiàn)PGA 比 CPU 和 GPU 能效高,體系結(jié)構(gòu)上的根本優(yōu)勢是無指令、無需共享內(nèi)存。使用共享內(nèi)存在多個 kernel 之間通信,在順序通信(FIFO)的情況下是毫無必要的。況且 FPGA 上的 DRAM 一般比 GPU 上的 DRAM 慢很多。

因此我們提出了 ClickNP 網(wǎng)絡(luò)編程框架 [5],使用管道(channel)而非共享內(nèi)存來在執(zhí)行單元(element/kernel)間、執(zhí)行單元和主機軟件間進行通信。

需要共享內(nèi)存的應用,也可以在管道的基礎(chǔ)上實現(xiàn),畢竟 CSP(Communicating Sequential Process)和共享內(nèi)存理論上是等價的嘛。ClickNP 目前還是在 OpenCL 基礎(chǔ)上的一個框架,受到 C 語言描述硬件的局限性(當然 HLS 比 Verilog 的開發(fā)效率確實高多了)。理想的硬件描述語言,大概不會是 C 語言吧。

圖片

▲ClickNP 使用 channel 在 elements 間通信,來源:[5]

圖片

▲ClickNP 使用 channel 在 FPGA 和 CPU 間通信,來源:[5]

低延遲的流式處理,需要最多的地方就是通信。然而CPU 由于并行性的限制和操作系統(tǒng)的調(diào)度,做通信效率不高,延遲也不穩(wěn)定。

此外,通信就必然涉及到調(diào)度和仲裁,CPU 由于單核性能的局限和核間通信的低效,調(diào)度、仲裁性能受限,硬件則很適合做這種重復工作。因此我的博士研究把 FPGA 定義為通信的「大管家」,不管是服務器跟服務器之間的通信,虛擬機跟虛擬機之間的通信,進程跟進程之間的通信,CPU 跟存儲設(shè)備之間的通信,都可以用 FPGA 來加速。

成也蕭何,敗也蕭何。缺少指令同時是 FPGA 的優(yōu)勢和軟肋。

每做一點不同的事情,就要占用一定的 FPGA 邏輯資源。如果要做的事情復雜、重復性不強,就會占用大量的邏輯資源,其中的大部分處于閑置狀態(tài)。這時就不如用馮·諾依曼結(jié)構(gòu)的處理器。

數(shù)據(jù)中心里的很多任務有很強的局部性和重復性:一部分是虛擬化平臺需要做的網(wǎng)絡(luò)和存儲,這些都屬于通信;另一部分是客戶計算任務里的,比如機器學習、加密解密。

首先把 FPGA 用于它最擅長的通信,日后也許也會像 AWS 那樣把 FPGA 作為計算加速卡租給客戶。

不管通信還是機器學習、加密解密,算法都是很復雜的,如果試圖用 FPGA 完全取代 CPU,勢必會帶來 FPGA 邏輯資源極大的浪費,也會提高 FPGA 程序的開發(fā)成本。更實用的做法是FPGA 和 CPU 協(xié)同工作,局部性和重復性強的歸 FPGA,復雜的歸 CPU。

當我們用 FPGA 加速了 Bing 搜索、深度學習等越來越多的服務;當網(wǎng)絡(luò)虛擬化、存儲虛擬化等基礎(chǔ)組件的數(shù)據(jù)平面被 FPGA 把持;當 FPGA 組成的「數(shù)據(jù)中心加速平面」成為網(wǎng)絡(luò)和服務器之間的天塹……似乎有種感覺,F(xiàn)PGA 將掌控全局,CPU 上的計算任務反而變得碎片化,受 FPGA 的驅(qū)使。以往我們是 CPU 為主,把重復的計算任務卸載(offload)到 FPGA 上;以后會不會變成 FPGA 為主,把復雜的計算任務卸載到 CPU 上呢?隨著 Xeon + FPGA 的問世,古老的 SoC 會不會在數(shù)據(jù)中心煥發(fā)新生?

相關(guān)下載

中國FPGA芯片行業(yè)報告

國產(chǎn)FPGA研究框架

ASIC技術(shù)專題分析

2021中國智能網(wǎng)卡行業(yè)概覽

中國數(shù)據(jù)處理器行業(yè)概覽(2021)

DPU在數(shù)據(jù)中心和邊緣云上的應用

英偉達DPU集數(shù)據(jù)中心于芯片

本號資料全部上傳至知識星球,更多內(nèi)容請登錄智能計算芯知識(知識星球)星球下載全部資料。

來源:電子

作者:胡薇

參考文獻:

[1] Large-Scale Reconfigurable Computing in a Microsoft Datacenter https://www.microsoft.com/en-us/research/wp-content/uploads/2014/06/HC26.12.520-Recon-Fabric-Pulnam-Microsoft-Catapult.pdf

[2] A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services, ISCA'14 https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Catapult_ISCA_2014.pdf

[3] Microsoft Has a Whole New Kind of Computer Chip—and It’ll Change Everything

[4] A Cloud-Scale Acceleration Architecture, MICRO'16 https://www.microsoft.com/en-us/research/wp-content/uploads/2016/10/Cloud-Scale-Acceleration-Architecture.pdf

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • FPGA
    +關(guān)注

    關(guān)注

    1629

    文章

    21748

    瀏覽量

    603989
  • 微軟
    +關(guān)注

    關(guān)注

    4

    文章

    6600

    瀏覽量

    104137
  • cpu
    cpu
    +關(guān)注

    關(guān)注

    68

    文章

    10873

    瀏覽量

    212056
收藏 人收藏

    評論

    相關(guān)推薦

    東芝FFSA:可以替代并完全兼容FPGA

    FPGA 由于開發(fā)靈活方便,以及早期投資少,已經(jīng)廣泛應用在各種應用上,但是FPGA也有很明顯的缺陷,比如:單價太高,功耗太大,無法完全滿足客戶的要求,雖然有客戶想使用ASIC來替代FPGA
    發(fā)表于 07-07 15:39 ?3224次閱讀

    FPGA有哪些開發(fā)環(huán)境?可以用VSCode開發(fā)

    FPGA有哪些開發(fā)環(huán)境?可以用VSCode開發(fā)
    發(fā)表于 04-29 23:05

    THS4521可以替代AD8138嗎?

    THS4521可以替代AD8138?看是否替代主要看什么參數(shù)
    發(fā)表于 08-05 08:18

    國產(chǎn)芯片有能替代DAC8555芯片的

    國產(chǎn)芯片有能替代DAC8555芯片的
    發(fā)表于 11-22 15:37

    做LED點陣,我想知道譯碼器是干嘛的,不要可以嗎?可以替換

    做LED點陣,我想知道譯碼器是干嘛的,不要可以嗎?可以替換
    發(fā)表于 11-12 13:11

    有人能幫我做下基于Zc序列的時頻域同步的Fpga實現(xiàn)

    基于ZC序列的時頻域同步的FPGA實現(xiàn),題目沒有什么具體要求,通信系統(tǒng)只要設(shè)計收發(fā)就可以,信道直接用高斯白噪聲信道就可以。要求有matlab仿真驗證和FPGa實現(xiàn)和仿真,不需要實物,有
    發(fā)表于 04-13 14:19

    有人做過stm32和fpga通過串口進行通信

    有人做過stm32和fpga用串口進行通信的,急急急
    發(fā)表于 05-19 02:43

    如何選擇國產(chǎn)化替代FPGA產(chǎn)品?

    國產(chǎn)FPGA正在面臨挑戰(zhàn)如何選擇國產(chǎn)化替代FPGA產(chǎn)品
    發(fā)表于 03-02 06:30

    獨立的DSP會被FPGA替代

    這幾年有點背,逐漸遠離主流話題,所以有人就有了這樣的問題:DSP會被FPGA取代嗎?小編總結(jié)了各個網(wǎng)友的回答:  網(wǎng)友一:獨立的DSP不會被FPGA替代,但是會被增強了信號處理功能的ARM處理器
    發(fā)表于 07-16 08:12

    AD7768芯片的RESERT可以直接用FPGA的IO口控制

    AD7768芯片的RESERT可以直接用FPGA的IO口控制
    發(fā)表于 12-01 07:18

    GPS定位替代系統(tǒng)的FPGA實現(xiàn)

    GPS定位替代系統(tǒng)的FPGA實現(xiàn)   概述:本文在分析目前使用的GPS定位系統(tǒng)的基礎(chǔ)上,探討了一種替代系統(tǒng),系統(tǒng)通過接收不同城市廣播電臺的發(fā)出的報時信號,算出這些地
    發(fā)表于 04-17 17:40 ?1125次閱讀
    GPS定位<b class='flag-5'>替代</b>系統(tǒng)的<b class='flag-5'>FPGA</b>實現(xiàn)

    人工智能可以“讀懂”人類的心情?

    人工智能可以做的事情很多,但它們能“讀懂”人類的心情?近日科學家們可能找到了一種讓AI學會“讀心”的方法。
    的頭像 發(fā)表于 07-13 11:18 ?3228次閱讀
    人工智能<b class='flag-5'>可以</b>“讀懂”人類的心情<b class='flag-5'>嘛</b>?

    什么是TinyML?它可以(也不能)用于什么?

    FPGA一直以低功耗、可重構(gòu)的特點在各個領(lǐng)域內(nèi)應用,同時也可以大大增加物聯(lián)網(wǎng)應用環(huán)境,所以在FPGA上應用TinyML是否是FPGA方便的最佳應用?我們接下來分析一下TinyML的特點
    的頭像 發(fā)表于 11-28 10:25 ?7082次閱讀

    同規(guī)格的繞線貼片功率電感可以相互替代

    關(guān)于繞線貼片功率電感應用方面,有一個討論的非常熱門的問題——同規(guī)格繞線貼片功率電感能不能相互替代使用?其實這是一個關(guān)于電感替代的問題,不同品牌電感之間的替代近幾年是
    發(fā)表于 03-20 09:17 ?0次下載

    FPGA行業(yè)深度報告-國產(chǎn)替代當自強.zip

    FPGA行業(yè)深度報告-國產(chǎn)替代當自強
    發(fā)表于 01-13 09:06 ?3次下載
    主站蜘蛛池模板: 一久久| 亚洲a视频在线观看| 国产人妖一区二区| 被窝伦理午夜电影网| 99久久久精品免费观看国产| 永久免费看bbb| 夜色伊甸园| 亚洲中文字幕在线第六区| 亚洲成年人在线观看| 小小水蜜桃视频高清在线播放| 色偷偷影院| 神马午夜不卡片| 色戒西瓜视频| 手机在线观看无码日韩视频| 日韩经典欧美一区二区三区| 欧美一级情欲片在线| 欧美一区二区三区播放| 青青精品国产自在线拍| 秋霞网在线伦理影片| 青青青国产依人精品视频| 日本xxx在线观看免费播放| 日韩欧美一级| 我要女人的全黄录像| 羞羞漫画视频| 亚洲精品中文字幕一二三四区 | 日本久久久| 日本一卡精品视频免费| 神马影院在线eecss伦理片| 小寡妇好紧进去了好大看视频| 亚洲国产第一区二区三区| 亚洲综合视频| 88.7在线收听| 成人伦理影院| 国产精品九九九久久九九| 国产在线精品亚洲第一区| 久久久国产精品免费A片3D| 男人插曲女人的视频| 日本在线高清不卡免费播放| 香蕉视频国产精品| 夜夜艹日日干| beeg日本高清xxxx|