“近日,清華大學張強教授、中科院化學所文銳研究員和北京理工大學閆崇研究員在《JACS》期刊報道了鋰離子電池中固體電解質界面(SEI)的形核生長模式的研究。本工作研究了兩種典型的SEI:第一種是鋰鹽(如LiFSI)分解形成的無機SEI,其遵循混合2D/3D生長模式,形核過電勢越大,2D的成分越高;另一種是有機成膜劑(如EC)分解形成的有機SEI,其嚴格遵循2DI的形核生長模式,能夠有效地覆蓋電極表面并成膜。根據(jù)這一原理,通過在電池化成初期施加大電流脈沖來誘導無機SEI的二維生長,從而提升了SEI的成膜均勻性和電池的性能。該基礎研究為二次電池中快充、長循環(huán)、高容量電極SEI界面的精確調控提供了理論指導原則。”
第一部分:研究背景 固體電解質界面膜(SEI)是鋰離子電池中“最重要也最神秘”的組分。因為它的存在,石墨負極可以在遠超電解液電化學還原窗口的電位下穩(wěn)定工作,從而提升電池的能量密度和循環(huán)壽命。SEI的厚度通常為5~50 nm。SEI雖然在電池中的含量極低,但是對提升電池的穩(wěn)定性、功率性能和安全性起到了至關重要的作用。過去的四十年間,大量研究致力于揭示SEI的化學本質、結構以及離子傳輸機理。然而,還沒有厘清SEI的初始形核和生長模式。事實上,SEI的初始形核和生長不但是理解SEI所有理化性質的前提,也決定了SEI的結構和形貌,從而決定了其對電極的粘附性和長循環(huán)中的穩(wěn)定性。
傳統(tǒng)的異相形核生長理論將形核分為瞬時(instantaneous,I)和連續(xù)(progressive,P)模式。前者表明形核位點在初始一瞬間即全部形成,后者表明形核位點在核的生長過程中持續(xù)形成。后續(xù)核的生長則可以按照維度分為二維(2D)和三維(3D)生長。如果能夠將原位觀測和經(jīng)典形核理論有機結合,就有望從更微觀尺度解析SEI的形核生長模式。
第二部分:研究內容:
二次電池中普遍存在異相形核和生長過程。例如,鋰在集流體上的形核生長和Li2S在碳基底上的形核生長分別對應了鋰硫電池充放電過程中的兩個關鍵反應,其對鋰硫電池的性能起到了決定性的作用。大量研究者對這兩種形核過程的動力學和生長維度進行了定量研究。然而,定量研究SEI的形核和生長過程卻遇到以下三方面的挑戰(zhàn):1. SEI形成過程所占容量極小,難以準確捕捉電化學信號。2. 實際電化學研究中SEI呈現(xiàn)的的電流-時間曲線都是單調遞減的,所以無法套入基于恒壓條件下的單峰電流-時間曲線所代表的經(jīng)典形核模型。3. 原位尺度上難以直接觀察SEI的形核和生長。
研究團隊早期采用石墨作為工作電極,引入弱溶劑化電解液,探究了陰離子在石墨材料上的形核與生長機制,詳細解讀如下。 Angew. Chem.(VIP論文):鋰電池中SEI的漸進形核和二維生長機制 因石墨的比表面積較小,在研究有機誘導界面的形核與生長時存在一定困難。為了克服上述難題,本工作采用了大比表面積乙炔黑(carbon black,CB)負極“放大”SEI形成反應、弱溶劑化電解液(weakly solvating electrolyte,WSE)誘導單峰電流-時間曲線、高分辨原位電化學原子力顯微鏡(electrochemical atomic force microscopy,EC-AFM)技術原位觀測SEI形核過程,解決了以上三個方面的難題,成功解析了無機和有機成膜劑誘導的SEI形核和生長過程。
圖1. SEI在CB電極上生長的電化學曲線。(a)Li | CB電池的首圈放電曲線。(b)WSE電解液的恒壓電流-時間曲線。(c)WSE+0.2 EC電解液的恒壓電流-時間曲線。(d)WSE+0.5 EC電解液的恒壓電流-時間曲線。
恒流放電條件下,WSE體系中都會呈現(xiàn)一個形核過電位,預示著發(fā)生了SEI形核過程。這一形核過電位的存在和恒壓計時電流曲線中的單峰是一一對應的。由于ECDMC中沒有出現(xiàn)這一形核過電位,所以其恒壓計時電流曲線是單調遞減的,無法采用經(jīng)典模型描述。
圖2. 原位EC-AFM觀測WSE中LiFSI誘導的無機SEI在HOPG電極上的形核生長過程。(a)不同電位下無量綱時間-電流曲線及其與傳統(tǒng)形核模式(3DI,3DP,2DI,2DP)的對比。原位AFM觀測HOPG電極在(b)OCP,(c–e)1.00 V下的圖片。(f)e的3D AFM圖片。(b–d)中標尺為400 nm,(e)中為600 nm。
WSE中無機SEI的形成主要依靠LiFSI的分解,且屬于2DI/3DP混合形核生長模式。LiFSI誘導的SEI具有納米顆粒的形狀,其首先在HOPG的端面聚集,隨后逐漸連結成項鏈狀,覆蓋端平面。形核的過電位越大,形核過程越接近2DI。
圖3. 原位EC-AFM觀測WSE+ 0.2EC中的EC誘導的有機SEI在HOPG電極上的形核生長過程。(a–b)WSE+0.2 EC和WSE+0.5 EC在不同電位下無量綱時間-電流曲線及其與傳統(tǒng)形核模式(3DI,3DP,2DI,2DP)的對比。原位AFM觀測HOPG電極在(c)OCP,(d)1.11–0.82 V,(e–g)0.50 V下的圖片。(h)d–g中沿所示虛線的高度剖面信息。(i)g的3D AFM圖片。圖中所有標尺均為400 nm。
WSE+0.2 EC中有機SEI的形成主要依靠EC的分解,屬于2DI形核生長模式。EC誘導的SEI成膜狀,首先在HOPG的端面聚集,隨后向HOPG的基平面二維延伸,厚度不變,逐漸覆蓋整個HOPG表面。
圖4. HOPG電極上SEI形成的示意圖。(a)原始的HOPG電極。(b–c)LiFSI誘導的無機SEI顆粒形核和后續(xù)生長過程。(d–e)EC誘導的有機SEI薄膜形核和后續(xù)生長過程。
圖5. 通過調控SEI的形核和生長模式改善LFP |石墨電池性能。(a)LFP |石墨電池的容量和庫倫效率在1.0 C循環(huán)過程中的變化。(b)LFP |石墨電池在第50圈(實線)和第300圈(虛線)時的電壓曲線。在每圈充電前,WSE+pulse電池會以一個4.0 C的脈沖電流充至3.3 V并恒壓直至電流小于0.1 C。隨后按照正常充放電協(xié)議進行循環(huán)。
由上述結果可知,WSE+0.2 EC中EC的2DI成膜質量遠高于LiFSI納米顆粒的混合2D/3D成核模式,因此所得的SEI能更好地保護電極,呈現(xiàn)出更加優(yōu)異的電化學性能。然而,通過在SEI形成初期采用大電流脈沖制造大過電位,能夠誘導LiFSI分解并以二維的方式成膜,所得SEI更均勻、成膜質量更好。因此,WSE+pulse電池的容量保持率能夠提升至和WSE+0.2 EC相當。
第三部分:結論
本工作基于計時電流法和原位電化學AFM觀測,定量解析了兩種典型SEI(無機和有機)的形核和生長過程。鋰鹽(如LiFSI)分解形成的無機SEI遵循混合2D/3D生長模式,其形核過電勢越大,2D的成分越高;有機成膜劑(如EC)分解形成的有機SEI嚴格遵循2DI的形核生長模式,能夠有效地覆蓋電極表面并成膜。根據(jù)該原理,提出了通過在電池化成初期施加大電流脈沖來誘導無機SEI二維生長的可行性,從而提升了SEI的成膜均勻性和電池性能。本工作以一個全新的視角探討了SEI的形核和生長過程,揭示了該過程中又一深層次的細節(jié),為后續(xù)精準調控電化學裝置中的快充、長循環(huán)及高穩(wěn)定界面開辟了新的思路。
審核編輯:劉清
-
鋰離子電池
+關注
關注
85文章
3238瀏覽量
77685 -
電解液
+關注
關注
10文章
847瀏覽量
23092 -
AFM
+關注
關注
0文章
59瀏覽量
20172
原文標題:清華&化學所&北理工JACS:鋰離子電池中SEI的形核生長機制研究
文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論