色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

PyTorch教程-9.2. 將原始文本轉換為序列數據

jf_pJlTbmA9 ? 來源:PyTorch ? 作者:PyTorch ? 2023-06-05 15:44 ? 次閱讀

在本書中,我們經常會使用表示為單詞、字符或單詞序列的文本數據。首先,我們需要一些基本工具來將原始文本轉換為適當形式的序列。典型的預處理流水線執行以下步驟:

將文本作為字符串加載到內存中。

將字符串拆分為標記(例如,單詞或字符)。

構建一個詞匯詞典,將每個詞匯元素與一個數字索引相關聯。

將文本轉換為數字索引序列。

import collections
import random
import re
import torch
from d2l import torch as d2l

import collections
import random
import re
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

import collections
import random
import re
import jax
from jax import numpy as jnp
from d2l import jax as d2l

No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)

import collections
import random
import re
import tensorflow as tf
from d2l import tensorflow as d2l

9.2.1. 讀取數據集

在這里,我們將使用 HG Wells 的The Time Machine,這是一本 30000 多字的書。雖然實際應用程序通常會涉及大得多的數據集,但這足以演示預處理管道。以下_download方法將原始文本讀入字符串。

class TimeMachine(d2l.DataModule): #@save
  """The Time Machine dataset."""
  def _download(self):
    fname = d2l.download(d2l.DATA_URL + 'timemachine.txt', self.root,
               '090b5e7e70c295757f55df93cb0a180b9691891a')
    with open(fname) as f:
      return f.read()

data = TimeMachine()
raw_text = data._download()
raw_text[:60]

'時間機器,HG Wells [1898]nnnnnInnnThe Time Tra'

class TimeMachine(d2l.DataModule): #@save
  """The Time Machine dataset."""
  def _download(self):
    fname = d2l.download(d2l.DATA_URL + 'timemachine.txt', self.root,
               '090b5e7e70c295757f55df93cb0a180b9691891a')
    with open(fname) as f:
      return f.read()

data = TimeMachine()
raw_text = data._download()
raw_text[:60]

Downloading ../data/timemachine.txt from http://d2l-data.s3-accelerate.amazonaws.com/timemachine.txt...

'The Time Machine, by H. G. Wells [1898]nnnnnInnnThe Time Tra'

class TimeMachine(d2l.DataModule): #@save
  """The Time Machine dataset."""
  def _download(self):
    fname = d2l.download(d2l.DATA_URL + 'timemachine.txt', self.root,
               '090b5e7e70c295757f55df93cb0a180b9691891a')
    with open(fname) as f:
      return f.read()

data = TimeMachine()
raw_text = data._download()
raw_text[:60]

'The Time Machine, by H. G. Wells [1898]nnnnnInnnThe Time Tra'

class TimeMachine(d2l.DataModule): #@save
  """The Time Machine dataset."""
  def _download(self):
    fname = d2l.download(d2l.DATA_URL + 'timemachine.txt', self.root,
               '090b5e7e70c295757f55df93cb0a180b9691891a')
    with open(fname) as f:
      return f.read()

data = TimeMachine()
raw_text = data._download()
raw_text[:60]

'The Time Machine, by H. G. Wells [1898]nnnnnInnnThe Time Tra'

為簡單起見,我們在預處理原始文本時忽略標點符號和大寫字母。

@d2l.add_to_class(TimeMachine) #@save
def _preprocess(self, text):
  return re.sub('[^A-Za-z]+', ' ', text).lower()

text = data._preprocess(raw_text)
text[:60]

'the time machine by h g wells i the time traveller for so it'

@d2l.add_to_class(TimeMachine) #@save
def _preprocess(self, text):
  return re.sub('[^A-Za-z]+', ' ', text).lower()

text = data._preprocess(raw_text)
text[:60]

'the time machine by h g wells i the time traveller for so it'

@d2l.add_to_class(TimeMachine) #@save
def _preprocess(self, text):
  return re.sub('[^A-Za-z]+', ' ', text).lower()

text = data._preprocess(raw_text)
text[:60]

'the time machine by h g wells i the time traveller for so it'

@d2l.add_to_class(TimeMachine) #@save
def _preprocess(self, text):
  return re.sub('[^A-Za-z]+', ' ', text).lower()

text = data._preprocess(raw_text)
text[:60]

'the time machine by h g wells i the time traveller for so it'

9.2.2. 代幣化

標記是文本的原子(不可分割)單元。每個時間步對應 1 個 token,但究竟什么是 token 是一種設計選擇。例如,我們可以將句子“Baby needs a new pair of shoes”表示為一個包含 7 個單詞的序列,其中所有單詞的集合包含一個很大的詞匯表(通常是數萬或數十萬個單詞)?;蛘呶覀儗⑼粋€句子表示為更長的 30 個字符序列,使用更小的詞匯表(只有 256 個不同的 ASCII 字符)。下面,我們將預處理后的文本標記為一系列字符。

@d2l.add_to_class(TimeMachine) #@save
def _tokenize(self, text):
  return list(text)

tokens = data._tokenize(text)
','.join(tokens[:30])

't,h,e, ,t,i,m,e, ,m,a,c,h,i,n,e, ,b,y, ,h, ,g, ,w,e,l,l,s, '

@d2l.add_to_class(TimeMachine) #@save
def _tokenize(self, text):
  return list(text)

tokens = data._tokenize(text)
','.join(tokens[:30])

't,h,e, ,t,i,m,e, ,m,a,c,h,i,n,e, ,b,y, ,h, ,g, ,w,e,l,l,s, '

@d2l.add_to_class(TimeMachine) #@save
def _tokenize(self, text):
  return list(text)

tokens = data._tokenize(text)
','.join(tokens[:30])

't,h,e, ,t,i,m,e, ,m,a,c,h,i,n,e, ,b,y, ,h, ,g, ,w,e,l,l,s, '

@d2l.add_to_class(TimeMachine) #@save
def _tokenize(self, text):
  return list(text)

tokens = data._tokenize(text)
','.join(tokens[:30])

't,h,e, ,t,i,m,e, ,m,a,c,h,i,n,e, ,b,y, ,h, ,g, ,w,e,l,l,s, '

9.2.3. 詞匯

這些標記仍然是字符串。然而,我們模型的輸入最終必須由數值輸入組成。接下來,我們介紹一個用于構建詞匯表的類,即,將每個不同的標記值與唯一索引相關聯的對象。首先,我們確定訓練語料庫中的唯一標記集。然后我們為每個唯一標記分配一個數字索引。為方便起見,通常會刪除不常用的詞匯元素。Whenever we encounter a token at training or test time that had not been previously seen or was dropped from the vocabulary, we represent it by a special “” token, signifying that this is an unknown value.

class Vocab: #@save
  """Vocabulary for text."""
  def __init__(self, tokens=[], min_freq=0, reserved_tokens=[]):
    # Flatten a 2D list if needed
    if tokens and isinstance(tokens[0], list):
      tokens = [token for line in tokens for token in line]
    # Count token frequencies
    counter = collections.Counter(tokens)
    self.token_freqs = sorted(counter.items(), key=lambda x: x[1],
                 reverse=True)
    # The list of unique tokens
    self.idx_to_token = list(sorted(set([''] + reserved_tokens + [
      token for token, freq in self.token_freqs if freq >= min_freq])))
    self.token_to_idx = {token: idx
               for idx, token in enumerate(self.idx_to_token)}

  def __len__(self):
    return len(self.idx_to_token)

  def __getitem__(self, tokens):
    if not isinstance(tokens, (list, tuple)):
      return self.token_to_idx.get(tokens, self.unk)
    return [self.__getitem__(token) for token in tokens]

  def to_tokens(self, indices):
    if hasattr(indices, '__len__') and len(indices) > 1:
      return [self.idx_to_token[int(index)] for index in indices]
    return self.idx_to_token[indices]

  @property
  def unk(self): # Index for the unknown token
    return self.token_to_idx['']

我們現在為我們的數據集構建一個詞匯表,將字符串序列轉換為數字索引列表。請注意,我們沒有丟失任何信息,并且可以輕松地將我們的數據集轉換回其原始(字符串)表示形式。

vocab = Vocab(tokens)
indices = vocab[tokens[:10]]
print('indices:', indices)
print('words:', vocab.to_tokens(indices))

indices: [21, 9, 6, 0, 21, 10, 14, 6, 0, 14]
words: ['t', 'h', 'e', ' ', 't', 'i', 'm', 'e', ' ', 'm']

vocab = Vocab(tokens)
indices = vocab[tokens[:10]]
print('indices:', indices)
print('words:', vocab.to_tokens(indices))

indices: [21, 9, 6, 0, 21, 10, 14, 6, 0, 14]
words: ['t', 'h', 'e', ' ', 't', 'i', 'm', 'e', ' ', 'm']

vocab = Vocab(tokens)
indices = vocab[tokens[:10]]
print('indices:', indices)
print('words:', vocab.to_tokens(indices))

indices: [21, 9, 6, 0, 21, 10, 14, 6, 0, 14]
words: ['t', 'h', 'e', ' ', 't', 'i', 'm', 'e', ' ', 'm']

vocab = Vocab(tokens)
indices = vocab[tokens[:10]]
print('indices:', indices)
print('words:', vocab.to_tokens(indices))

indices: [21, 9, 6, 0, 21, 10, 14, 6, 0, 14]
words: ['t', 'h', 'e', ' ', 't', 'i', 'm', 'e', ' ', 'm']

9.2.4. 把它們放在一起

使用上述類和方法,我們將所有內容打包到build該類的以下方法中TimeMachine,該方法返回 corpus,一個標記索引列表,以及, The Time Machinevocab語料庫的詞匯表 。我們在這里所做的修改是:(i)我們將文本標記為字符,而不是單詞,以簡化后面部分的訓練;(ii)是單個列表,而不是標記列表的列表,因為時間機器數據集中的每個文本行不一定是句子或段落。corpus

@d2l.add_to_class(TimeMachine) #@save
def build(self, raw_text, vocab=None):
  tokens = self._tokenize(self._preprocess(raw_text))
  if vocab is None: vocab = Vocab(tokens)
  corpus = [vocab[token] for token in tokens]
  return corpus, vocab

corpus, vocab = data.build(raw_text)
len(corpus), len(vocab)

(173428, 28)

@d2l.add_to_class(TimeMachine) #@save
def build(self, raw_text, vocab=None):
  tokens = self._tokenize(self._preprocess(raw_text))
  if vocab is None: vocab = Vocab(tokens)
  corpus = [vocab[token] for token in tokens]
  return corpus, vocab

corpus, vocab = data.build(raw_text)
len(corpus), len(vocab)

(173428, 28)

@d2l.add_to_class(TimeMachine) #@save
def build(self, raw_text, vocab=None):
  tokens = self._tokenize(self._preprocess(raw_text))
  if vocab is None: vocab = Vocab(tokens)
  corpus = [vocab[token] for token in tokens]
  return corpus, vocab

corpus, vocab = data.build(raw_text)
len(corpus), len(vocab)

(173428, 28)

@d2l.add_to_class(TimeMachine) #@save
def build(self, raw_text, vocab=None):
  tokens = self._tokenize(self._preprocess(raw_text))
  if vocab is None: vocab = Vocab(tokens)
  corpus = [vocab[token] for token in tokens]
  return corpus, vocab

corpus, vocab = data.build(raw_text)
len(corpus), len(vocab)

(173428, 28)

9.2.5. 探索性語言統計

使用真實的語料庫和Vocab在單詞上定義的類,我們可以檢查有關語料庫中單詞使用的基本統計數據。下面,我們根據時間機器中使用的單詞構建一個詞匯表,并打印出 10 個最常出現的單詞。

words = text.split()
vocab = Vocab(words)
vocab.token_freqs[:10]

[('the', 2261),
 ('i', 1267),
 ('and', 1245),
 ('of', 1155),
 ('a', 816),
 ('to', 695),
 ('was', 552),
 ('in', 541),
 ('that', 443),
 ('my', 440)]

words = text.split()
vocab = Vocab(words)
vocab.token_freqs[:10]

[('the', 2261),
 ('i', 1267),
 ('and', 1245),
 ('of', 1155),
 ('a', 816),
 ('to', 695),
 ('was', 552),
 ('in', 541),
 ('that', 443),
 ('my', 440)]

words = text.split()
vocab = Vocab(words)
vocab.token_freqs[:10]

[('the', 2261),
 ('i', 1267),
 ('and', 1245),
 ('of', 1155),
 ('a', 816),
 ('to', 695),
 ('was', 552),
 ('in', 541),
 ('that', 443),
 ('my', 440)]

words = text.split()
vocab = Vocab(words)
vocab.token_freqs[:10]

[('the', 2261),
 ('i', 1267),
 ('and', 1245),
 ('of', 1155),
 ('a', 816),
 ('to', 695),
 ('was', 552),
 ('in', 541),
 ('that', 443),
 ('my', 440)]

請注意,十個最常用的詞并沒有那么具有描述性。你甚至可以想象,如果我們隨機選擇任何一本書,我們可能會看到一個非常相似的列表。諸如“the”和“a”之類的冠詞,“i”和“my”之類的代詞,以及“of”、“to”和“in”之類的介詞經常出現,因為它們具有共同的句法作用。這些既常見又特別具有描述性的詞通常稱為停用詞,在前幾代基于詞袋表示的文本分類器中,它們最常被過濾掉。然而,它們具有意義,在使用現代基于 RNN 和 Transformer 的神經模型時,沒有必要過濾掉它們。如果您進一步查看列表,您會注意到詞頻衰減很快。這 10th最常見的詞小于1/5和最受歡迎一樣普遍。當我們沿著排名下降時,詞頻傾向于遵循冪律分布(特別是 Zipfian)。為了更好地理解,我們繪制了詞頻圖。

freqs = [freq for token, freq in vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',
     xscale='log', yscale='log')

pYYBAGR9Nk2AWlrQAADx5k69Fio104.svg

freqs = [freq for token, freq in vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',
     xscale='log', yscale='log')

pYYBAGR9Nk2AWlrQAADx5k69Fio104.svg

freqs = [freq for token, freq in vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',
     xscale='log', yscale='log')

pYYBAGR9Nk2AWlrQAADx5k69Fio104.svg

freqs = [freq for token, freq in vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',
     xscale='log', yscale='log')

pYYBAGR9Nk2AWlrQAADx5k69Fio104.svg

在將前幾個詞作為例外處理后,所有剩余的詞在對數-對數圖上大致沿著一條直線。Zipf 定律捕捉到了這種現象,該定律指出頻率ni 的ith出現頻率最高的詞是:

(9.2.1)ni∝1iα,

這相當于

(9.2.2)log?ni=?αlog?i+c,

在哪里α是表征分布的指數,并且c是一個常數。如果我們想通過計算統計數據來建模單詞,這應該已經讓我們停下來了。畢竟,我們會顯著高估尾部的頻率,也稱為不常見詞。但是其他單詞組合呢,比如兩個連續的單詞(bigrams)、三個連續的單詞(trigrams)等等?讓我們看看二元組頻率的行為方式是否與單個單詞(一元組)頻率的行為方式相同。

bigram_tokens = ['--'.join(pair) for pair in zip(words[:-1], words[1:])]
bigram_vocab = Vocab(bigram_tokens)
bigram_vocab.token_freqs[:10]

[('of--the', 309),
 ('in--the', 169),
 ('i--had', 130),
 ('i--was', 112),
 ('and--the', 109),
 ('the--time', 102),
 ('it--was', 99),
 ('to--the', 85),
 ('as--i', 78),
 ('of--a', 73)]

bigram_tokens = ['--'.join(pair) for pair in zip(words[:-1], words[1:])]
bigram_vocab = Vocab(bigram_tokens)
bigram_vocab.token_freqs[:10]

[('of--the', 309),
 ('in--the', 169),
 ('i--had', 130),
 ('i--was', 112),
 ('and--the', 109),
 ('the--time', 102),
 ('it--was', 99),
 ('to--the', 85),
 ('as--i', 78),
 ('of--a', 73)]

bigram_tokens = ['--'.join(pair) for pair in zip(words[:-1], words[1:])]
bigram_vocab = Vocab(bigram_tokens)
bigram_vocab.token_freqs[:10]

[('of--the', 309),
 ('in--the', 169),
 ('i--had', 130),
 ('i--was', 112),
 ('and--the', 109),
 ('the--time', 102),
 ('it--was', 99),
 ('to--the', 85),
 ('as--i', 78),
 ('of--a', 73)]

bigram_tokens = ['--'.join(pair) for pair in zip(words[:-1], words[1:])]
bigram_vocab = Vocab(bigram_tokens)
bigram_vocab.token_freqs[:10]

[('of--the', 309),
 ('in--the', 169),
 ('i--had', 130),
 ('i--was', 112),
 ('and--the', 109),
 ('the--time', 102),
 ('it--was', 99),
 ('to--the', 85),
 ('as--i', 78),
 ('of--a', 73)]

這里值得注意的一件事。在十個最常見的詞對中,有九個由停用詞組成,只有一個與實際書籍相關——“時間”。此外,讓我們看看三元組頻率是否以相同的方式表現。

trigram_tokens = ['--'.join(triple) for triple in zip(
  words[:-2], words[1:-1], words[2:])]
trigram_vocab = Vocab(trigram_tokens)
trigram_vocab.token_freqs[:10]

[('the--time--traveller', 59),
 ('the--time--machine', 30),
 ('the--medical--man', 24),
 ('it--seemed--to', 16),
 ('it--was--a', 15),
 ('here--and--there', 15),
 ('seemed--to--me', 14),
 ('i--did--not', 14),
 ('i--saw--the', 13),
 ('i--began--to', 13)]

trigram_tokens = ['--'.join(triple) for triple in zip(
  words[:-2], words[1:-1], words[2:])]
trigram_vocab = Vocab(trigram_tokens)
trigram_vocab.token_freqs[:10]

[('the--time--traveller', 59),
 ('the--time--machine', 30),
 ('the--medical--man', 24),
 ('it--seemed--to', 16),
 ('it--was--a', 15),
 ('here--and--there', 15),
 ('seemed--to--me', 14),
 ('i--did--not', 14),
 ('i--saw--the', 13),
 ('i--began--to', 13)]

trigram_tokens = ['--'.join(triple) for triple in zip(
  words[:-2], words[1:-1], words[2:])]
trigram_vocab = Vocab(trigram_tokens)
trigram_vocab.token_freqs[:10]

[('the--time--traveller', 59),
 ('the--time--machine', 30),
 ('the--medical--man', 24),
 ('it--seemed--to', 16),
 ('it--was--a', 15),
 ('here--and--there', 15),
 ('seemed--to--me', 14),
 ('i--did--not', 14),
 ('i--saw--the', 13),
 ('i--began--to', 13)]

trigram_tokens = ['--'.join(triple) for triple in zip(
  words[:-2], words[1:-1], words[2:])]
trigram_vocab = Vocab(trigram_tokens)
trigram_vocab.token_freqs[:10]

[('the--time--traveller', 59),
 ('the--time--machine', 30),
 ('the--medical--man', 24),
 ('it--seemed--to', 16),
 ('it--was--a', 15),
 ('here--and--there', 15),
 ('seemed--to--me', 14),
 ('i--did--not', 14),
 ('i--saw--the', 13),
 ('i--began--to', 13)]

最后,讓我們可視化這三個模型中的標記頻率:unigrams、bigrams 和 trigrams。

bigram_freqs = [freq for token, freq in bigram_vocab.token_freqs]
trigram_freqs = [freq for token, freq in trigram_vocab.token_freqs]
d2l.plot([freqs, bigram_freqs, trigram_freqs], xlabel='token: x',
     ylabel='frequency: n(x)', xscale='log', yscale='log',
     legend=['unigram', 'bigram', 'trigram'])

poYBAGR9NleAeLYxAAFssRbwmbA580.svg

bigram_freqs = [freq for token, freq in bigram_vocab.token_freqs]
trigram_freqs = [freq for token, freq in trigram_vocab.token_freqs]
d2l.plot([freqs, bigram_freqs, trigram_freqs], xlabel='token: x',
     ylabel='frequency: n(x)', xscale='log', yscale='log',
     legend=['unigram', 'bigram', 'trigram'])

poYBAGR9NleAeLYxAAFssRbwmbA580.svg

bigram_freqs = [freq for token, freq in bigram_vocab.token_freqs]
trigram_freqs = [freq for token, freq in trigram_vocab.token_freqs]
d2l.plot([freqs, bigram_freqs, trigram_freqs], xlabel='token: x',
     ylabel='frequency: n(x)', xscale='log', yscale='log',
     legend=['unigram', 'bigram', 'trigram'])

poYBAGR9NleAeLYxAAFssRbwmbA580.svg

bigram_freqs = [freq for token, freq in bigram_vocab.token_freqs]
trigram_freqs = [freq for token, freq in trigram_vocab.token_freqs]
d2l.plot([freqs, bigram_freqs, trigram_freqs], xlabel='token: x',
     ylabel='frequency: n(x)', xscale='log', yscale='log',
     legend=['unigram', 'bigram', 'trigram'])

poYBAGR9NleAeLYxAAFssRbwmbA580.svg

這個數字相當令人興奮。首先,除了 unigram 單詞之外,單詞序列似乎也遵循 Zipf 定律,盡管指數較小α在(9.2.1)中,取決于序列長度。二、數量不同n-克不是那么大。這給了我們希望,語言中有相當多的結構。三、多n-grams 很少出現。這使得某些方法不適用于語言建模,并激發了深度學習模型的使用。我們將在下一節討論這個問題。

9.2.6. 概括

文本是深度學習中最常見的序列數據形式之一。構成標記的常見選擇是字符、單詞和單詞片段。為了預處理文本,我們通常 (i) 將文本拆分為標記;(ii) 構建詞匯表以將標記字符串映射到數字索引;(iii) 將文本數據轉換為標記索引,供模型操作。在實踐中,單詞的出現頻率往往遵循齊普夫定律。這不僅適用于單個單詞(unigrams),也適用于 n-克。

9.2.7. 練習

在本節的實驗中,將文本標記為單詞并改變實例min_freq的參數值Vocab。定性地描述變化如何min_freq影響最終詞匯量的大小。

估計此語料庫中一元字母、二元字母和三元字母的 Zipfian 分布指數。

查找一些其他數據源(下載標準機器學習數據集、選擇另一本公共領域書籍、抓取網站等)。對于每個,在單詞和字符級別對數據進行標記化。詞匯量大小與Time Machine語料庫的等效值相比如何min_freq。估計與這些語料庫的一元和二元分布相對應的 Zipfian 分布的指數。他們如何與您觀察到的時間機器語料庫的值進行比較?

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • pytorch
    +關注

    關注

    2

    文章

    808

    瀏覽量

    13201
收藏 人收藏

    評論

    相關推薦

    如何算得的數據(10進制)轉換為16進制通過串口發送出?

    我用公式節點算得一組數據,好比是1212,1313,1414等,這些數據轉為16進制就是04BC,0521,0586,如何十進制的數據轉換為
    發表于 01-30 14:05

    請問怎樣實現labviewASCII碼文本轉換為中文顯示

    由于工程需要,獲取的數據時ASCII顯示的漢字,怎樣轉換為正常顯示的文本
    發表于 04-09 16:21

    如何原始數據從LIS2DS12轉換為G為2/4/8/16g范圍?

    如何原始數據從LIS2DS12轉換為G為2/4/8 / 16g范圍? #raw #g#lis2ds12以上來自于谷歌翻譯以下為原文 How i can translate the raw
    發表于 10-09 11:40

    怎么原始拜耳轉換為RGB輸出

    我正在尋找使用UVC驅動的一個新的USB攝像頭的基礎上的FX3控制器。我要使用的圖像傳感器輸出原始拜耳。我知道我可以使用UVC驅動程序作為傳輸機制,但我需要將原始拜耳轉換為RGB輸出。我也知道,這可
    發表于 06-11 10:42

    是否有辦法用vee pro文本文件轉換為excel文件?

    大家好,我想知道是否有辦法用vee pro文本文件轉換為excel文件?這是我的計劃:我已完成所有程序并將數據保存在文本文件中?,F在我要
    發表于 06-14 15:58

    如何在Python中將語音轉換為文本

      語音識別是計算機軟件識別口語中的單詞和短語,并將其轉換為可讀文本的能力。那么如何在Python中將語音轉換為文本?如何使用SpeechRecognition 庫在Python中將語
    發表于 07-29 18:12

    ABPDLNN100MG2A3壓力傳感器如何原始數據轉換為毫巴?

    大家好我正在研究來自霍尼韋爾的 ABPDLNN100MG2A3 壓力傳感器,它是一種 i2c 通信,我已經通過 i2c 讀取傳感器數據并將其保存在兩個變量 a 和 b 中,問題是如何原始數據
    發表于 02-01 06:23

    Pytorch模型轉換為DeepViewRT模型時出錯怎么解決?

    我最終可以在 i.MX 8M Plus 處理器上部署 .rtm 模型。 我遵循了 本指南,我 Pytorch 模型轉換為 ONNX 模型,然后按照指南中的描述,我嘗試 ONNX 模
    發表于 06-09 06:42

    ONNX模型轉換為中間表示(IR)后,精度下降了怎么解決?

    ONNX 模型轉換為 IR。 與使用 PyTorch 運行 ONNX 模型相比,Ran IR 采用 基準 C++ 工具,其性能準確率降低了 20%。 無法確定如何對圖像進行預處理以獲得更好的準確性。
    發表于 08-15 08:28

    如何ADC采集的原始數據序列轉換成VisualAnalog中Pattern Loader可以接受的I Only文件,文件格式是怎樣的?

    如何ADC采集的原始數據(從-8192~+8192)的序列轉換成VisualAnalog中Pattern Loader可以接受的I Only文件,文件格式是怎樣的?主要是用來評估采集
    發表于 12-15 06:22

    如何用百度硬盤搜索PDF轉換為文本文件txt

    如何用百度硬盤搜索PDF轉換為文本文件txt的方法     現在有很多“PDF”轉換為“TXT”的軟件,不
    發表于 10-12 01:54 ?1732次閱讀
    如何用百度硬盤搜索<b class='flag-5'>將</b>PDF<b class='flag-5'>轉換為</b><b class='flag-5'>文本</b>文件txt

    序列數據文本的深度學習

    模型提供文本序列數據; ?為序列數據使用一維卷積。 可以使用RNN構建的一些應用程序如下所示。 ?文檔分類器:識別推文或評論的情感,對
    的頭像 發表于 07-15 09:47 ?907次閱讀
    <b class='flag-5'>序列</b><b class='flag-5'>數據</b>和<b class='flag-5'>文本</b>的深度學習

    全面的分子生物學和序列分析工具套件有什么新功能

    GeneiousPrime 原始數據轉換為可視化,使序列分析直觀且用戶友好,從而使生物信息學變得可訪問。
    的頭像 發表于 09-20 10:42 ?751次閱讀

    PyTorch教程9.2原始文本轉換為序列數據

    電子發燒友網站提供《PyTorch教程9.2原始文本轉換為
    發表于 06-05 09:57 ?0次下載
    <b class='flag-5'>PyTorch</b>教程<b class='flag-5'>9.2</b>之<b class='flag-5'>將</b><b class='flag-5'>原始</b><b class='flag-5'>文本</b><b class='flag-5'>轉換為</b><b class='flag-5'>序列</b><b class='flag-5'>數據</b>

    PyTorch教程21.7之序列感知推薦系統

    電子發燒友網站提供《PyTorch教程21.7之序列感知推薦系統.pdf》資料免費下載
    發表于 06-06 09:31 ?0次下載
    <b class='flag-5'>PyTorch</b>教程21.7之<b class='flag-5'>序列</b>感知推薦系統
    主站蜘蛛池模板: 亚洲视频国产在线精品| 中国女人精69xxxxxx视频| 中文字幕一区久久久久| 宝贝乖女好紧好深好爽老师| 国产在线精彩亚洲久久| 欧美gay老头互吃| 亚洲高清在线mv| gogogo高清在线观看| 河南老太XXXXXHD| 区产品乱码芒果精品P站在线| xxxxx中国明星18| 69精品人妻一区二区三区蜜桃| 中文字幕无码亚洲字幕成A人蜜桃 中文字幕无码亚洲视频 | 手机在线成人精品视频网| 日本最新免费区中文| 日韩hd高清xxxⅹ| 色姣姣狠狠撩综合网| 天美传媒在线观看免费完整版| 四虎国产精品免费观看视频| 国产精品美女久久久久浪潮AV | 一本道高清无码v| 二色AV天堂在线| 老师好爽你下面水好多视频| 舔1V1高H糙汉| a级成人免费毛片完整版| 精品人妻伦九区久久AAA片69 | jk制服喷水| 久久久精品久久| 先锋影音 av| 穿着丝袜被男生强行啪啪| 美女拔萝卜| 亚洲精品色播一区二区| 俄罗斯14一18处交| 欧美xxxxx九色视频免费观看| 亚洲视频中文字幕在线观看| 国产精品久久久久久久久久影院| 欧美激情精品久久久久| 0855福利| 久久艹伊人| 亚洲色偷偷偷网站色偷一区人人藻| 叮当成人社区|