色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

PyTorch教程-11.5。多頭注意力

jf_pJlTbmA9 ? 來源:PyTorch ? 作者:PyTorch ? 2023-06-05 15:44 ? 次閱讀

在實踐中,給定一組相同的查詢、鍵和值,我們可能希望我們的模型結合來自同一注意機制的不同行為的知識,例如捕獲各種范圍的依賴關系(例如,較短范圍與較長范圍)在一個序列中。因此,這可能是有益的

允許我們的注意力機制聯合使用查詢、鍵和值的不同表示子空間。

為此,可以使用以下方式轉換查詢、鍵和值,而不是執行單個注意力池h獨立學習線性投影。那么這些h投影查詢、鍵和值被并行輸入注意力池。到底,h 注意池的輸出與另一個學習的線性投影連接并轉換以產生最終輸出。這種設計稱為多頭注意力,其中每個hattention pooling outputs 是一個頭 (Vaswani et al. , 2017)。使用全連接層執行可學習的線性變換,圖 11.5.1描述了多頭注意力。

poYBAGR9OBiAZsSgAAEO1TkhU64810.svg

圖 11.5.1多頭注意力,其中多個頭連接起來然后進行線性變換。

import math
import torch
from torch import nn
from d2l import torch as d2l

import math
from mxnet import autograd, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

import jax
from flax import linen as nn
from jax import numpy as jnp
from d2l import jax as d2l

No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)

import tensorflow as tf
from d2l import tensorflow as d2l

11.5.1。模型

在提供多頭注意力的實現之前,讓我們從數學上形式化這個模型。給定一個查詢 q∈Rdq, 關鍵 k∈Rdk和一個值 v∈Rdv, 每個注意力頭 hi(i=1,…,h) 被計算為

(11.5.1)hi=f(Wi(q)q,Wi(k)k,Wi(v)v)∈Rpv,

其中可學習參數 Wi(q)∈Rpq×dq, Wi(k)∈Rpk×dk和 Wi(v)∈Rpv×dv, 和f是注意力集中,例如11.3 節中的附加注意力和縮放點積注意力。多頭注意力輸出是另一種通過可學習參數進行的線性變換Wo∈Rpo×hpv的串聯h負責人:

(11.5.2)Wo[h1?hh]∈Rpo.

基于這種設計,每個頭可能會關注輸入的不同部分。可以表達比簡單加權平均更復雜的函數。

11.5.2。執行

在我們的實現中,我們為多頭注意力的每個頭選擇縮放的點積注意力。為了避免計算成本和參數化成本的顯著增長,我們設置 pq=pk=pv=po/h. 注意h如果我們將查詢、鍵和值的線性變換的輸出數量設置為 pqh=pkh=pvh=po. 在下面的實現中, po通過參數指定num_hiddens。

class MultiHeadAttention(d2l.Module): #@save
  """Multi-head attention."""
  def __init__(self, num_hiddens, num_heads, dropout, bias=False, **kwargs):
    super().__init__()
    self.num_heads = num_heads
    self.attention = d2l.DotProductAttention(dropout)
    self.W_q = nn.LazyLinear(num_hiddens, bias=bias)
    self.W_k = nn.LazyLinear(num_hiddens, bias=bias)
    self.W_v = nn.LazyLinear(num_hiddens, bias=bias)
    self.W_o = nn.LazyLinear(num_hiddens, bias=bias)

  def forward(self, queries, keys, values, valid_lens):
    # Shape of queries, keys, or values:
    # (batch_size, no. of queries or key-value pairs, num_hiddens)
    # Shape of valid_lens: (batch_size,) or (batch_size, no. of queries)
    # After transposing, shape of output queries, keys, or values:
    # (batch_size * num_heads, no. of queries or key-value pairs,
    # num_hiddens / num_heads)
    queries = self.transpose_qkv(self.W_q(queries))
    keys = self.transpose_qkv(self.W_k(keys))
    values = self.transpose_qkv(self.W_v(values))

    if valid_lens is not None:
      # On axis 0, copy the first item (scalar or vector) for num_heads
      # times, then copy the next item, and so on
      valid_lens = torch.repeat_interleave(
        valid_lens, repeats=self.num_heads, dim=0)

    # Shape of output: (batch_size * num_heads, no. of queries,
    # num_hiddens / num_heads)
    output = self.attention(queries, keys, values, valid_lens)
    # Shape of output_concat: (batch_size, no. of queries, num_hiddens)
    output_concat = self.transpose_output(output)
    return self.W_o(output_concat)

class MultiHeadAttention(d2l.Module): #@save
  """Multi-head attention."""
  def __init__(self, num_hiddens, num_heads, dropout, use_bias=False,
         **kwargs):
    super().__init__()
    self.num_heads = num_heads
    self.attention = d2l.DotProductAttention(dropout)
    self.W_q = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)
    self.W_k = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)
    self.W_v = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)
    self.W_o = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)

  def forward(self, queries, keys, values, valid_lens):
    # Shape of queries, keys, or values:
    # (batch_size, no. of queries or key-value pairs, num_hiddens)
    # Shape of valid_lens: (batch_size,) or (batch_size, no. of queries)
    # After transposing, shape of output queries, keys, or values:
    # (batch_size * num_heads, no. of queries or key-value pairs,
    # num_hiddens / num_heads)
    queries = self.transpose_qkv(self.W_q(queries))
    keys = self.transpose_qkv(self.W_k(keys))
    values = self.transpose_qkv(self.W_v(values))

    if valid_lens is not None:
      # On axis 0, copy the first item (scalar or vector) for num_heads
      # times, then copy the next item, and so on
      valid_lens = valid_lens.repeat(self.num_heads, axis=0)

    # Shape of output: (batch_size * num_heads, no. of queries,
    # num_hiddens / num_heads)
    output = self.attention(queries, keys, values, valid_lens)

    # Shape of output_concat: (batch_size, no. of queries, num_hiddens)
    output_concat = self.transpose_output(output)
    return self.W_o(output_concat)

class MultiHeadAttention(nn.Module): #@save
  num_hiddens: int
  num_heads: int
  dropout: float
  bias: bool = False

  def setup(self):
    self.attention = d2l.DotProductAttention(self.dropout)
    self.W_q = nn.Dense(self.num_hiddens, use_bias=self.bias)
    self.W_k = nn.Dense(self.num_hiddens, use_bias=self.bias)
    self.W_v = nn.Dense(self.num_hiddens, use_bias=self.bias)
    self.W_o = nn.Dense(self.num_hiddens, use_bias=self.bias)

  @nn.compact
  def __call__(self, queries, keys, values, valid_lens, training=False):
    # Shape of queries, keys, or values:
    # (batch_size, no. of queries or key-value pairs, num_hiddens)
    # Shape of valid_lens: (batch_size,) or (batch_size, no. of queries)
    # After transposing, shape of output queries, keys, or values:
    # (batch_size * num_heads, no. of queries or key-value pairs,
    # num_hiddens / num_heads)
    queries = self.transpose_qkv(self.W_q(queries))
    keys = self.transpose_qkv(self.W_k(keys))
    values = self.transpose_qkv(self.W_v(values))

    if valid_lens is not None:
      # On axis 0, copy the first item (scalar or vector) for num_heads
      # times, then copy the next item, and so on
      valid_lens = jnp.repeat(valid_lens, self.num_heads, axis=0)

    # Shape of output: (batch_size * num_heads, no. of queries,
    # num_hiddens / num_heads)
    output, attention_weights = self.attention(
      queries, keys, values, valid_lens, training=training)
    # Shape of output_concat: (batch_size, no. of queries, num_hiddens)
    output_concat = self.transpose_output(output)
    return self.W_o(output_concat), attention_weights

class MultiHeadAttention(d2l.Module): #@save
  """Multi-head attention."""
  def __init__(self, key_size, query_size, value_size, num_hiddens,
         num_heads, dropout, bias=False, **kwargs):
    super().__init__()
    self.num_heads = num_heads
    self.attention = d2l.DotProductAttention(dropout)
    self.W_q = tf.keras.layers.Dense(num_hiddens, use_bias=bias)
    self.W_k = tf.keras.layers.Dense(num_hiddens, use_bias=bias)
    self.W_v = tf.keras.layers.Dense(num_hiddens, use_bias=bias)
    self.W_o = tf.keras.layers.Dense(num_hiddens, use_bias=bias)

  def call(self, queries, keys, values, valid_lens, **kwargs):
    # Shape of queries, keys, or values:
    # (batch_size, no. of queries or key-value pairs, num_hiddens)
    # Shape of valid_lens: (batch_size,) or (batch_size, no. of queries)
    # After transposing, shape of output queries, keys, or values:
    # (batch_size * num_heads, no. of queries or key-value pairs,
    # num_hiddens / num_heads)
    queries = self.transpose_qkv(self.W_q(queries))
    keys = self.transpose_qkv(self.W_k(keys))
    values = self.transpose_qkv(self.W_v(values))

    if valid_lens is not None:
      # On axis 0, copy the first item (scalar or vector) for num_heads
      # times, then copy the next item, and so on
      valid_lens = tf.repeat(valid_lens, repeats=self.num_heads, axis=0)

    # Shape of output: (batch_size * num_heads, no. of queries,
    # num_hiddens / num_heads)
    output = self.attention(queries, keys, values, valid_lens, **kwargs)

    # Shape of output_concat: (batch_size, no. of queries, num_hiddens)
    output_concat = self.transpose_output(output)
    return self.W_o(output_concat)

為了允許多個頭的并行計算,上面的 MultiHeadAttention類使用了下面定義的兩種轉置方法。具體地,該transpose_output方法將方法的操作反轉transpose_qkv。

@d2l.add_to_class(MultiHeadAttention) #@save
def transpose_qkv(self, X):
  """Transposition for parallel computation of multiple attention heads."""
  # Shape of input X: (batch_size, no. of queries or key-value pairs,
  # num_hiddens). Shape of output X: (batch_size, no. of queries or
  # key-value pairs, num_heads, num_hiddens / num_heads)
  X = X.reshape(X.shape[0], X.shape[1], self.num_heads, -1)
  # Shape of output X: (batch_size, num_heads, no. of queries or key-value
  # pairs, num_hiddens / num_heads)
  X = X.permute(0, 2, 1, 3)
  # Shape of output: (batch_size * num_heads, no. of queries or key-value
  # pairs, num_hiddens / num_heads)
  return X.reshape(-1, X.shape[2], X.shape[3])

@d2l.add_to_class(MultiHeadAttention) #@save
def transpose_output(self, X):
  """Reverse the operation of transpose_qkv."""
  X = X.reshape(-1, self.num_heads, X.shape[1], X.shape[2])
  X = X.permute(0, 2, 1, 3)
  return X.reshape(X.shape[0], X.shape[1], -1)

@d2l.add_to_class(MultiHeadAttention) #@save
def transpose_qkv(self, X):
  """Transposition for parallel computation of multiple attention heads."""
  # Shape of input X: (batch_size, no. of queries or key-value pairs,
  # num_hiddens). Shape of output X: (batch_size, no. of queries or
  # key-value pairs, num_heads, num_hiddens / num_heads)
  X = X.reshape(X.shape[0], X.shape[1], self.num_heads, -1)
  # Shape of output X: (batch_size, num_heads, no. of queries or key-value
  # pairs, num_hiddens / num_heads)
  X = X.transpose(0, 2, 1, 3)
  # Shape of output: (batch_size * num_heads, no. of queries or key-value
  # pairs, num_hiddens / num_heads)
  return X.reshape(-1, X.shape[2], X.shape[3])

@d2l.add_to_class(MultiHeadAttention) #@save
def transpose_output(self, X):
  """Reverse the operation of transpose_qkv."""
  X = X.reshape(-1, self.num_heads, X.shape[1], X.shape[2])
  X = X.transpose(0, 2, 1, 3)
  return X.reshape(X.shape[0], X.shape[1], -1)

@d2l.add_to_class(MultiHeadAttention) #@save
def transpose_qkv(self, X):
  """Transposition for parallel computation of multiple attention heads."""
  # Shape of input X: (batch_size, no. of queries or key-value pairs,
  # num_hiddens). Shape of output X: (batch_size, no. of queries or
  # key-value pairs, num_heads, num_hiddens / num_heads)
  X = X.reshape((X.shape[0], X.shape[1], self.num_heads, -1))
  # Shape of output X: (batch_size, num_heads, no. of queries or key-value
  # pairs, num_hiddens / num_heads)
  X = jnp.transpose(X, (0, 2, 1, 3))
  # Shape of output: (batch_size * num_heads, no. of queries or key-value
  # pairs, num_hiddens / num_heads)
  return X.reshape((-1, X.shape[2], X.shape[3]))

@d2l.add_to_class(MultiHeadAttention) #@save
def transpose_output(self, X):
  """Reverse the operation of transpose_qkv."""
  X = X.reshape((-1, self.num_heads, X.shape[1], X.shape[2]))
  X = jnp.transpose(X, (0, 2, 1, 3))
  return X.reshape((X.shape[0], X.shape[1], -1))

@d2l.add_to_class(MultiHeadAttention) #@save
def transpose_qkv(self, X):
  """Transposition for parallel computation of multiple attention heads."""
  # Shape of input X: (batch_size, no. of queries or key-value pairs,
  # num_hiddens). Shape of output X: (batch_size, no. of queries or
  # key-value pairs, num_heads, num_hiddens / num_heads)
  X = tf.reshape(X, shape=(X.shape[0], X.shape[1], self.num_heads, -1))
  # Shape of output X: (batch_size, num_heads, no. of queries or key-value
  # pairs, num_hiddens / num_heads)
  X = tf.transpose(X, perm=(0, 2, 1, 3))
  # Shape of output: (batch_size * num_heads, no. of queries or key-value
  # pairs, num_hiddens / num_heads)
  return tf.reshape(X, shape=(-1, X.shape[2], X.shape[3]))

@d2l.add_to_class(MultiHeadAttention) #@save
def transpose_output(self, X):
  """Reverse the operation of transpose_qkv."""
  X = tf.reshape(X, shape=(-1, self.num_heads, X.shape[1], X.shape[2]))
  X = tf.transpose(X, perm=(0, 2, 1, 3))
  return tf.reshape(X, shape=(X.shape[0], X.shape[1], -1))

讓我們MultiHeadAttention使用一個玩具示例來測試我們實現的類,其中鍵和值相同。因此,多頭注意力輸出的形狀為 ( batch_size, num_queries, num_hiddens)。

num_hiddens, num_heads = 100, 5
attention = MultiHeadAttention(num_hiddens, num_heads, 0.5)
batch_size, num_queries, num_kvpairs = 2, 4, 6
valid_lens = torch.tensor([3, 2])
X = torch.ones((batch_size, num_queries, num_hiddens))
Y = torch.ones((batch_size, num_kvpairs, num_hiddens))
d2l.check_shape(attention(X, Y, Y, valid_lens),
        (batch_size, num_queries, num_hiddens))

num_hiddens, num_heads = 100, 5
attention = MultiHeadAttention(num_hiddens, num_heads, 0.5)
attention.initialize()

batch_size, num_queries, num_kvpairs = 2, 4, 6
valid_lens = np.array([3, 2])
X = np.ones((batch_size, num_queries, num_hiddens))
Y = np.ones((batch_size, num_kvpairs, num_hiddens))
d2l.check_shape(attention(X, Y, Y, valid_lens),
        (batch_size, num_queries, num_hiddens))

num_hiddens, num_heads = 100, 5
attention = MultiHeadAttention(num_hiddens, num_heads, 0.5)

batch_size, num_queries, num_kvpairs = 2, 4, 6
valid_lens = jnp.array([3, 2])
X = jnp.ones((batch_size, num_queries, num_hiddens))
Y = jnp.ones((batch_size, num_kvpairs, num_hiddens))
d2l.check_shape(attention.init_with_output(d2l.get_key(), X, Y, Y, valid_lens,
                      training=False)[0][0],
        (batch_size, num_queries, num_hiddens))

num_hiddens, num_heads = 100, 5
attention = MultiHeadAttention(num_hiddens, num_hiddens, num_hiddens,
                num_hiddens, num_heads, 0.5)

batch_size, num_queries, num_kvpairs = 2, 4, 6
valid_lens = tf.constant([3, 2])
X = tf.ones((batch_size, num_queries, num_hiddens))
Y = tf.ones((batch_size, num_kvpairs, num_hiddens))
d2l.check_shape(attention(X, Y, Y, valid_lens, training=False),
        (batch_size, num_queries, num_hiddens))

11.5.3。概括

多頭注意力通過查詢、鍵和值的不同表示子空間結合相同注意力池的知識。要并行計算多頭注意的多個頭,需要適當的張量操作。

11.5.4。練習

可視化本實驗中多個頭的注意力權重。

假設我們有一個基于多頭注意力的訓練模型,我們想要修剪最不重要的注意力頭以提高預測速度。我們如何設計實驗來衡量注意力頭的重要性?

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • pytorch
    +關注

    關注

    2

    文章

    808

    瀏覽量

    13249
收藏 人收藏

    評論

    相關推薦

    基于labview的注意力分配實驗設計

    畢設要求做一個注意力分配實驗設計。有些結構完全想不明白。具體如何實現如下。一個大概5*5的燈組合,要求隨機亮。兩個聲音大小不同的音頻,要求隨機響,有大、小兩個選項。以上兩種需要記錄并計算錯誤率。體現在表格上。大家可不可以勞煩幫個忙,幫我構思一下, 或者幫我做一下。拜托大家了。
    發表于 05-07 20:33

    深度分析NLP中的注意力機制

    注意力機制越發頻繁的出現在文獻中,因此對注意力機制的學習、掌握與應用顯得十分重要。本文便對注意力機制做了較為全面的綜述。
    的頭像 發表于 02-17 09:18 ?3874次閱讀

    融合雙層多頭注意力與CNN的回歸模型

    針對現有文本情感分析方法存在的無法高效捕捉相關文本情感特征從而造成情感分析效果不佳的問題提出一種融合雙層多頭注意力與卷積神經網絡(CNN)的回歸模型 DLMA-CNN。采用多頭注意力
    發表于 03-25 15:16 ?6次下載
    融合雙層<b class='flag-5'>多頭</b>自<b class='flag-5'>注意力</b>與CNN的回歸模型

    基于注意力機制等的社交網絡熱度預測模型

    基于注意力機制等的社交網絡熱度預測模型
    發表于 06-07 15:12 ?14次下載

    基于注意力機制的跨域服裝檢索方法綜述

    基于注意力機制的跨域服裝檢索方法綜述
    發表于 06-27 10:33 ?2次下載

    基于注意力機制的新聞文本分類模型

    基于注意力機制的新聞文本分類模型
    發表于 06-27 15:32 ?30次下載

    基于超大感受野注意力的超分辨率模型

    通過引入像素注意力,PAN在大幅降低參數量的同時取得了非常優秀的性能。相比通道注意力與空域注意力,像素注意力是一種更廣義的注意力形式,為進一
    的頭像 發表于 10-27 13:55 ?1214次閱讀

    如何用番茄鐘提高注意力

    電子發燒友網站提供《如何用番茄鐘提高注意力.zip》資料免費下載
    發表于 10-28 14:29 ?0次下載
    如何用番茄鐘提高<b class='flag-5'>注意力</b>

    詳解五種即插即用的視覺注意力模塊

    SE注意力模塊的全稱是Squeeze-and-Excitation block、其中Squeeze實現全局信息嵌入、Excitation實現自適應權重矯正,合起來就是SE注意力模塊。
    的頭像 發表于 05-18 10:23 ?2614次閱讀
    詳解五種即插即用的視覺<b class='flag-5'>注意力</b>模塊

    PyTorch教程11.4之Bahdanau注意力機制

    電子發燒友網站提供《PyTorch教程11.4之Bahdanau注意力機制.pdf》資料免費下載
    發表于 06-05 15:11 ?0次下載
    <b class='flag-5'>PyTorch</b>教程11.4之Bahdanau<b class='flag-5'>注意力</b>機制

    PyTorch教程11.5多頭注意力

    電子發燒友網站提供《PyTorch教程11.5多頭注意力.pdf》資料免費下載
    發表于 06-05 15:04 ?0次下載
    <b class='flag-5'>PyTorch</b>教程<b class='flag-5'>11.5</b>之<b class='flag-5'>多頭</b><b class='flag-5'>注意力</b>

    PyTorch教程11.6之自注意力和位置編碼

    電子發燒友網站提供《PyTorch教程11.6之自注意力和位置編碼.pdf》資料免費下載
    發表于 06-05 15:05 ?0次下載
    <b class='flag-5'>PyTorch</b>教程11.6之自<b class='flag-5'>注意力</b>和位置編碼

    PyTorch教程16.5之自然語言推理:使用注意力

    電子發燒友網站提供《PyTorch教程16.5之自然語言推理:使用注意力.pdf》資料免費下載
    發表于 06-05 10:49 ?0次下載
    <b class='flag-5'>PyTorch</b>教程16.5之自然語言推理:使用<b class='flag-5'>注意力</b>

    PyTorch教程-11.6. 自注意力和位置編碼

    11.6. 自注意力和位置編碼? Colab [火炬]在 Colab 中打開筆記本 Colab [mxnet] Open the notebook in Colab Colab [jax
    的頭像 發表于 06-05 15:44 ?1181次閱讀
    <b class='flag-5'>PyTorch</b>教程-11.6. 自<b class='flag-5'>注意力</b>和位置編碼

    PyTorch教程-16.5。自然語言推理:使用注意力

    16.5。自然語言推理:使用注意力? Colab [火炬]在 Colab 中打開筆記本 Colab [mxnet] Open the notebook in Colab Colab
    的頭像 發表于 06-05 15:44 ?578次閱讀
    <b class='flag-5'>PyTorch</b>教程-16.5。自然語言推理:使用<b class='flag-5'>注意力</b>
    主站蜘蛛池模板: 爆操日本美女| 国产真实露脸乱子伦| 在教室做啊好大用力| 伊人影院久久| 最新毛片网| chinese黑人第一次| 成人免费在线观看| 国产互换后人妻的疯狂VIDEO| 国产精品女主播主要上线| 国产亚洲欧洲日韩在线观看| 久久99re2热在线播放7| 免费观看99热只有精品| 日韩AV片无码一区二区三区不卡 | 大陆老太交xxxxxhd在线| 国产精品 中文字幕 亚洲 欧美| 含羞草在线免费观看| 老妇xxxxbbbb| 日韩综合网| 亚洲美女视频高清在线看| 最近中文字幕在线中文视频| 成人免费视频在线观看| 国产一区二区波多野结衣| 快播h动漫网站| 日本综艺大尺度无删减版在线 | 久久精品无码一区二区日韩av| 男生插女生下体| 网友自拍偷拍| 在线综合 亚洲 欧美| 动听968| 九九在线免费视频| 奇米色偷偷| 亚洲精品白色在线发布| 9420高清免费观看在线大全| 国产第一页在线视频| 久久久久久久久性潮| 日本漫画无彩翼漫画| 亚洲人成电影网站在线观看| gogo免费在线观看| 幻女FREE性俄罗斯学生| 欧美日韩视频一区二区三区| 亚洲精品久久久久69影院|