在本章前面的部分中,我們?yōu)?SNLI 數(shù)據(jù)集上的自然語言推理任務(wù)(如第 16.4 節(jié)所述)設(shè)計(jì)了一個(gè)基于注意力的架構(gòu)(第16.5節(jié))。現(xiàn)在我們通過微調(diào) BERT 重新審視這個(gè)任務(wù)。正如16.6 節(jié)所討論的 ,自然語言推理是一個(gè)序列級(jí)文本對(duì)分類問題,微調(diào) BERT 只需要一個(gè)額外的基于 MLP 的架構(gòu),如圖 16.7.1所示。
圖 16.7.1本節(jié)將預(yù)訓(xùn)練的 BERT 提供給基于 MLP 的自然語言推理架構(gòu)。
在本節(jié)中,我們將下載預(yù)訓(xùn)練的小型 BERT 版本,然后對(duì)其進(jìn)行微調(diào)以在 SNLI 數(shù)據(jù)集上進(jìn)行自然語言推理。
import json import multiprocessing import os import torch from torch import nn from d2l import torch as d2l
import json import multiprocessing import os from mxnet import gluon, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np()
16.7.1。加載預(yù)訓(xùn)練的 BERT
我們已經(jīng)在第 15.9 節(jié)和第 15.10 節(jié)中解釋了如何在 WikiText-2 數(shù)據(jù)集上預(yù)訓(xùn)練 BERT (請(qǐng)注意,原始 BERT 模型是在更大的語料庫上預(yù)訓(xùn)練的)。如15.10 節(jié)所述,原始 BERT 模型有數(shù)億個(gè)參數(shù)。在下文中,我們提供了兩個(gè)版本的預(yù)訓(xùn)練 BERT:“bert.base”與需要大量計(jì)算資源進(jìn)行微調(diào)的原始 BERT 基礎(chǔ)模型差不多大,而“bert.small”是一個(gè)小版本方便演示。
d2l.DATA_HUB['bert.base'] = (d2l.DATA_URL + 'bert.base.torch.zip', '225d66f04cae318b841a13d32af3acc165f253ac') d2l.DATA_HUB['bert.small'] = (d2l.DATA_URL + 'bert.small.torch.zip', 'c72329e68a732bef0452e4b96a1c341c8910f81f')
d2l.DATA_HUB['bert.base'] = (d2l.DATA_URL + 'bert.base.zip', '7b3820b35da691042e5d34c0971ac3edbd80d3f4') d2l.DATA_HUB['bert.small'] = (d2l.DATA_URL + 'bert.small.zip', 'a4e718a47137ccd1809c9107ab4f5edd317bae2c')
預(yù)訓(xùn)練的 BERT 模型都包含一個(gè)定義詞匯集的“vocab.json”文件和一個(gè)預(yù)訓(xùn)練參數(shù)的“pretrained.params”文件。我們實(shí)現(xiàn)以下load_pretrained_model 函數(shù)來加載預(yù)訓(xùn)練的 BERT 參數(shù)。
def load_pretrained_model(pretrained_model, num_hiddens, ffn_num_hiddens, num_heads, num_blks, dropout, max_len, devices): data_dir = d2l.download_extract(pretrained_model) # Define an empty vocabulary to load the predefined vocabulary vocab = d2l.Vocab() vocab.idx_to_token = json.load(open(os.path.join(data_dir, 'vocab.json'))) vocab.token_to_idx = {token: idx for idx, token in enumerate( vocab.idx_to_token)} bert = d2l.BERTModel( len(vocab), num_hiddens, ffn_num_hiddens=ffn_num_hiddens, num_heads=4, num_blks=2, dropout=0.2, max_len=max_len) # Load pretrained BERT parameters bert.load_state_dict(torch.load(os.path.join(data_dir, 'pretrained.params'))) return bert, vocab
def load_pretrained_model(pretrained_model, num_hiddens, ffn_num_hiddens, num_heads, num_blks, dropout, max_len, devices): data_dir = d2l.download_extract(pretrained_model) # Define an empty vocabulary to load the predefined vocabulary vocab = d2l.Vocab() vocab.idx_to_token = json.load(open(os.path.join(data_dir, 'vocab.json'))) vocab.token_to_idx = {token: idx for idx, token in enumerate( vocab.idx_to_token)} bert = d2l.BERTModel(len(vocab), num_hiddens, ffn_num_hiddens, num_heads, num_blks, dropout, max_len) # Load pretrained BERT parameters bert.load_parameters(os.path.join(data_dir, 'pretrained.params'), ctx=devices) return bert, vocab
為了便于在大多數(shù)機(jī)器上進(jìn)行演示,我們將在本節(jié)中加載和微調(diào)預(yù)訓(xùn)練 BERT 的小型版本(“bert.small”)。在練習(xí)中,我們將展示如何微調(diào)更大的“bert.base”以顯著提高測(cè)試準(zhǔn)確性。
devices = d2l.try_all_gpus() bert, vocab = load_pretrained_model( 'bert.small', num_hiddens=256, ffn_num_hiddens=512, num_heads=4, num_blks=2, dropout=0.1, max_len=512, devices=devices)
Downloading ../data/bert.small.torch.zip from http://d2l-data.s3-accelerate.amazonaws.com/bert.small.torch.zip...
devices = d2l.try_all_gpus() bert, vocab = load_pretrained_model( 'bert.small', num_hiddens=256, ffn_num_hiddens=512, num_heads=4, num_blks=2, dropout=0.1, max_len=512, devices=devices)
Downloading ../data/bert.small.zip from http://d2l-data.s3-accelerate.amazonaws.com/bert.small.zip...
16.7.2。微調(diào) BERT 的數(shù)據(jù)集
對(duì)于 SNLI 數(shù)據(jù)集上的下游任務(wù)自然語言推理,我們定義了一個(gè)自定義的數(shù)據(jù)集類SNLIBERTDataset。在每個(gè)示例中,前提和假設(shè)形成一對(duì)文本序列,并被打包到一個(gè) BERT 輸入序列中,如圖 16.6.2所示。回想第 15.8.4 節(jié) ,段 ID 用于區(qū)分 BERT 輸入序列中的前提和假設(shè)。對(duì)于 BERT 輸入序列 ( max_len) 的預(yù)定義最大長(zhǎng)度,輸入文本對(duì)中較長(zhǎng)者的最后一個(gè)標(biāo)記會(huì)不斷被刪除,直到max_len滿足為止。為了加速生成用于微調(diào) BERT 的 SNLI 數(shù)據(jù)集,我們使用 4 個(gè)工作進(jìn)程并行生成訓(xùn)練或測(cè)試示例。
class SNLIBERTDataset(torch.utils.data.Dataset): def __init__(self, dataset, max_len, vocab=None): all_premise_hypothesis_tokens = [[ p_tokens, h_tokens] for p_tokens, h_tokens in zip( *[d2l.tokenize([s.lower() for s in sentences]) for sentences in dataset[:2]])] self.labels = torch.tensor(dataset[2]) self.vocab = vocab self.max_len = max_len (self.all_token_ids, self.all_segments, self.valid_lens) = self._preprocess(all_premise_hypothesis_tokens) print('read ' + str(len(self.all_token_ids)) + ' examples') def _preprocess(self, all_premise_hypothesis_tokens): pool = multiprocessing.Pool(4) # Use 4 worker processes out = pool.map(self._mp_worker, all_premise_hypothesis_tokens) all_token_ids = [ token_ids for token_ids, segments, valid_len in out] all_segments = [segments for token_ids, segments, valid_len in out] valid_lens = [valid_len for token_ids, segments, valid_len in out] return (torch.tensor(all_token_ids, dtype=torch.long), torch.tensor(all_segments, dtype=torch.long), torch.tensor(valid_lens)) def _mp_worker(self, premise_hypothesis_tokens): p_tokens, h_tokens = premise_hypothesis_tokens self._truncate_pair_of_tokens(p_tokens, h_tokens) tokens, segments = d2l.get_tokens_and_segments(p_tokens, h_tokens) token_ids = self.vocab[tokens] + [self.vocab['']] * (self.max_len - len(tokens)) segments = segments + [0] * (self.max_len - len(segments)) valid_len = len(tokens) return token_ids, segments, valid_len def _truncate_pair_of_tokens(self, p_tokens, h_tokens): # Reserve slots for '', '', and '' tokens for the BERT # input while len(p_tokens) + len(h_tokens) > self.max_len - 3: if len(p_tokens) > len(h_tokens): p_tokens.pop() else: h_tokens.pop() def __getitem__(self, idx): return (self.all_token_ids[idx], self.all_segments[idx], self.valid_lens[idx]), self.labels[idx] def __len__(self): return len(self.all_token_ids)
class SNLIBERTDataset(gluon.data.Dataset): def __init__(self, dataset, max_len, vocab=None): all_premise_hypothesis_tokens = [[ p_tokens, h_tokens] for p_tokens, h_tokens in zip( *[d2l.tokenize([s.lower() for s in sentences]) for sentences in dataset[:2]])] self.labels = np.array(dataset[2]) self.vocab = vocab self.max_len = max_len (self.all_token_ids, self.all_segments, self.valid_lens) = self._preprocess(all_premise_hypothesis_tokens) print('read ' + str(len(self.all_token_ids)) + ' examples') def _preprocess(self, all_premise_hypothesis_tokens): pool = multiprocessing.Pool(4) # Use 4 worker processes out = pool.map(self._mp_worker, all_premise_hypothesis_tokens) all_token_ids = [ token_ids for token_ids, segments, valid_len in out] all_segments = [segments for token_ids, segments, valid_len in out] valid_lens = [valid_len for token_ids, segments, valid_len in out] return (np.array(all_token_ids, dtype='int32'), np.array(all_segments, dtype='int32'), np.array(valid_lens)) def _mp_worker(self, premise_hypothesis_tokens): p_tokens, h_tokens = premise_hypothesis_tokens self._truncate_pair_of_tokens(p_tokens, h_tokens) tokens, segments = d2l.get_tokens_and_segments(p_tokens, h_tokens) token_ids = self.vocab[tokens] + [self.vocab['']] * (self.max_len - len(tokens)) segments = segments + [0] * (self.max_len - len(segments)) valid_len = len(tokens) return token_ids, segments, valid_len def _truncate_pair_of_tokens(self, p_tokens, h_tokens): # Reserve slots for '', '', and '' tokens for the BERT # input while len(p_tokens) + len(h_tokens) > self.max_len - 3: if len(p_tokens) > len(h_tokens): p_tokens.pop() else: h_tokens.pop() def __getitem__(self, idx): return (self.all_token_ids[idx], self.all_segments[idx], self.valid_lens[idx]), self.labels[idx] def __len__(self): return len(self.all_token_ids)
下載 SNLI 數(shù)據(jù)集后,我們通過實(shí)例化SNLIBERTDataset類來生成訓(xùn)練和測(cè)試示例。此類示例將在自然語言推理的訓(xùn)練和測(cè)試期間以小批量讀取。
# Reduce `batch_size` if there is an out of memory error. In the original BERT # model, `max_len` = 512 batch_size, max_len, num_workers = 512, 128, d2l.get_dataloader_workers() data_dir = d2l.download_extract('SNLI') train_set = SNLIBERTDataset(d2l.read_snli(data_dir, True), max_len, vocab) test_set = SNLIBERTDataset(d2l.read_snli(data_dir, False), max_len, vocab) train_iter = torch.utils.data.DataLoader(train_set, batch_size, shuffle=True, num_workers=num_workers) test_iter = torch.utils.data.DataLoader(test_set, batch_size, num_workers=num_workers)
read 549367 examples read 9824 examples
# Reduce `batch_size` if there is an out of memory error. In the original BERT # model, `max_len` = 512 batch_size, max_len, num_workers = 512, 128, d2l.get_dataloader_workers() data_dir = d2l.download_extract('SNLI') train_set = SNLIBERTDataset(d2l.read_snli(data_dir, True), max_len, vocab) test_set = SNLIBERTDataset(d2l.read_snli(data_dir, False), max_len, vocab) train_iter = gluon.data.DataLoader(train_set, batch_size, shuffle=True, num_workers=num_workers) test_iter = gluon.data.DataLoader(test_set, batch_size, num_workers=num_workers)
read 549367 examples read 9824 examples
16.7.3。微調(diào) BERT
如圖16.6.2所示,為自然語言推理微調(diào) BERT 只需要一個(gè)額外的 MLP,該 MLP 由兩個(gè)完全連接的層組成(參見下一類中的self.hidden和)。該 MLP 將特殊“”標(biāo)記的 BERT 表示形式(對(duì)前提和假設(shè)的信息進(jìn)行編碼)轉(zhuǎn)換為自然語言推理的三個(gè)輸出:蘊(yùn)含、矛盾和中性。self.outputBERTClassifier
class BERTClassifier(nn.Module): def __init__(self, bert): super(BERTClassifier, self).__init__() self.encoder = bert.encoder self.hidden = bert.hidden self.output = nn.LazyLinear(3) def forward(self, inputs): tokens_X, segments_X, valid_lens_x = inputs encoded_X = self.encoder(tokens_X, segments_X, valid_lens_x) return self.output(self.hidden(encoded_X[:, 0, :]))
class BERTClassifier(nn.Block): def __init__(self, bert): super(BERTClassifier, self).__init__() self.encoder = bert.encoder self.hidden = bert.hidden self.output = nn.Dense(3) def forward(self, inputs): tokens_X, segments_X, valid_lens_x = inputs encoded_X = self.encoder(tokens_X, segments_X, valid_lens_x) return self.output(self.hidden(encoded_X[:, 0, :]))
接下來,預(yù)訓(xùn)練的 BERT 模型bert被輸入到 下游應(yīng)用程序的BERTClassifier實(shí)例中。net在 BERT 微調(diào)的常見實(shí)現(xiàn)中,只會(huì)net.output從頭學(xué)習(xí)附加 MLP ( ) 輸出層的參數(shù)。net.encoder預(yù)訓(xùn)練的 BERT 編碼器 ( ) 和附加 MLP 的隱藏層 ( )的所有參數(shù)都net.hidden將被微調(diào)。
net = BERTClassifier(bert)
net = BERTClassifier(bert) net.output.initialize(ctx=devices)
回想一下15.8 節(jié)中類MaskLM和 NextSentencePred類在它們使用的 MLP 中都有參數(shù)。這些參數(shù)是預(yù)訓(xùn)練 BERT 模型中參數(shù)bert的一部分,因此也是net. 然而,這些參數(shù)僅用于計(jì)算預(yù)訓(xùn)練期間的掩碼語言建模損失和下一句預(yù)測(cè)損失。MaskLM這兩個(gè)損失函數(shù)與微調(diào)下游應(yīng)用程序無關(guān),因此在微調(diào) BERT 時(shí),在和中使用的 MLP 的參數(shù)NextSentencePred不會(huì)更新(失效)。
為了允許具有陳舊梯度的參數(shù),在的函數(shù) ignore_stale_grad=True中設(shè)置了標(biāo)志 。我們使用此函數(shù)使用SNLI 的訓(xùn)練集 ( ) 和測(cè)試集 ( )來訓(xùn)練和評(píng)估模型。由于計(jì)算資源有限,訓(xùn)練和測(cè)試的準(zhǔn)確性可以進(jìn)一步提高:我們將其討論留在練習(xí)中。stepd2l.train_batch_ch13nettrain_itertest_iter
lr, num_epochs = 1e-4, 5 trainer = torch.optim.Adam(net.parameters(), lr=lr) loss = nn.CrossEntropyLoss(reduction='none') net(next(iter(train_iter))[0]) d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)
loss 0.519, train acc 0.791, test acc 0.782 9226.8 examples/sec on [device(type='cuda', index=0), device(type='cuda', index=1)]
lr, num_epochs = 1e-4, 5 trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr}) loss = gluon.loss.SoftmaxCrossEntropyLoss() d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices, d2l.split_batch_multi_inputs)
loss 0.477, train acc 0.810, test acc 0.785 4626.9 examples/sec on [gpu(0), gpu(1)]
16.7.4。概括
我們可以為下游應(yīng)用微調(diào)預(yù)訓(xùn)練的 BERT 模型,例如 SNLI 數(shù)據(jù)集上的自然語言推理。
在微調(diào)期間,BERT 模型成為下游應(yīng)用模型的一部分。僅與預(yù)訓(xùn)練損失相關(guān)的參數(shù)在微調(diào)期間不會(huì)更新。
16.7.5。練習(xí)
如果您的計(jì)算資源允許,微調(diào)一個(gè)更大的預(yù)訓(xùn)練 BERT 模型,該模型與原始 BERT 基礎(chǔ)模型差不多大。將函數(shù)中的參數(shù)設(shè)置load_pretrained_model為:將“bert.small”替換為“bert.base”,將 、 、 和 的值分別增加到 num_hiddens=256768、3072、12ffn_num_hiddens=512和num_heads=412 num_blks=2。通過增加微調(diào)周期(并可能調(diào)整其他超參數(shù)),您能否獲得高于 0.86 的測(cè)試精度?
如何根據(jù)長(zhǎng)度比截?cái)嘁粚?duì)序列?比較這對(duì)截?cái)喾椒ê皖愔惺褂玫姆椒?SNLIBERTDataset。他們的優(yōu)缺點(diǎn)是什么?
-
自然語言
+關(guān)注
關(guān)注
1文章
287瀏覽量
13346 -
pytorch
+關(guān)注
關(guān)注
2文章
807瀏覽量
13200
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論