色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

莫一非團隊揭示固態電池中鋰金屬結晶機理

清新電源 ? 來源:能源學人 ? 2023-06-06 09:43 ? 次閱讀

【研究背景】

結晶是材料科學、物理和化學中的一個重要現象。當前人們主要研究由溫度或溶液變化引起的結晶過程,電化學沉積下的結晶過程仍然很少被研究,特別是下一代高能可充電電池中Li、Na、Mg和Zn金屬負極的電化學沉積和結晶過程依然鮮為人知。

在電化學沉積過程中,電解質中的金屬離子沉積并結晶為金屬晶體。過高的結晶能壘會提高電化學沉積的過電位。高過的電位或極化會降低電池性能和效率,甚至導致鋰枝晶的生成。通過降低過電位可以提高金屬負極的電化學性能。使用固態電解質來解決目前困擾金屬負極的問題是一個很有前途的方向。

固態電解質中金屬負極的電化學沉積行為跟與液體電解質中完全不同。在液體電解質中,電化學沉積過程中金屬顆粒的形核生長過程可以用經典的成核理論來描述。相比之下,在固態電解質上的鋰連續沉積過程中,這些沉積的鋰離子如何成為鋰金屬結晶的路徑和機理仍然不清楚。這種結晶過程具有固有的勢壘,并且會限制的電化學金屬沉積過程的速率。進一步改進金屬負極(如鋰金屬負極)的性能,急需從原子尺度上揭示結晶的原子路徑和動力學勢壘。

【工作簡介】

近日,美國馬里蘭大學莫一非教授團隊采用大規模分子動力學模擬方法,研究并揭示了固體界面處鋰結晶的原子路徑和能壘。研究發現,鋰結晶采用由界面鋰原子介導的多步路徑,具有無序和隨機密堆積構型作為結晶的中間步驟,這產生了結晶的能壘。這種對多步結晶路徑的理解將奧斯特瓦爾德分步規則(Ostwald's step rule)的適用性擴展到界面原子態,并提出了將有利的界面原子態作為中間步驟來降低結晶勢壘的合理策略。本文作者的研究結果開辟了界面工程的全新研究途徑,這將促進固態電池金屬電極的電化學沉積和結晶過程。該文章以“Lithium crystallization at solid interfaces”為題在線發表在國際頂級期刊Nature Communications上?,F任同濟大學材料科學與工程學院特聘研究員楊孟昊是本文第一作者。

【內容表述】

為了研究固態電解質界面上金屬負極的電化學沉積行為。原子尺度建模方法在揭示固態電解質界面上原子轉變機制方面具有獨特的優勢,可以表征每個原子的能量并達到飛秒級別的實時分辨率。在本項研究中,本文作者使用固態電解質界面處的鋰金屬負極作為系統模型,采用大規模分子動力學模擬(MD)方法,以直接揭示固態電解質界面上鋰連續沉積過程中結晶的原子路徑和動力學勢壘。

ad93a532-03da-11ee-90ce-dac502259ad0.png

圖1. 鋰沉積過程中固態電解質界面鋰結晶的原子模型。a)分子動力學模擬中包含鋰金屬層(藍色)和固態電解質層(橙色)的原子模型;b)鋰沉積過程中一個能量變化周期下的Li-SE界面的原子結構;在鋰沉積過程中,c)以體相鋰金屬為參考時鋰金屬層的能量;d-f)鋰金屬層中不同局域構型下鋰原子的數量(如:體心立方(BCC)、隨機密排六方相(rHCP))。

Li-SE界面上界面原子結構在鋰電池循環過程中對金屬鋰的結晶過程中起著關鍵作用。通過采用分子動力學模擬方法跟蹤鋰隨時間的演變過程,作者進一步揭示了鋰從鋰離子到體心立方BCC-Li的逐步結晶過程。沉積的鋰原子首先被Li-SE界面上非晶鋰原子層吸附,隨后在后續的鋰沉積過程中通過兩條途徑結晶成BCC鋰金屬過程。

在第一種途徑中,沉積的Li原子首先通過disordered-Li,隨后轉變為BCC鋰金屬;在第二種途徑中,沉積的鋰原子通過disordered-Li之后,大部分的disordered-Li會形成下一個rHCP-Li中間相,最后轉變成為BCC-Li金屬(圖2b和d)。因此,鋰結晶由固態電解質界面處非晶原子層介導,其中界面原子、disordered-Li和rHCP-Li充當多步驟結晶過程的中間結構,而這些界面原子結構是由于固態電解質和鋰金屬之間界面相互作用引起的。

ada1c5f4-03da-11ee-90ce-dac502259ad0.png

圖2. 鋰結晶的多步路徑。a) 19 ns時Li-SE界面的原子結構,以及展示的每層原子(無序disordered、隨機密排六方相rHCP、體心立方相BCC鋰分別以青色、綠色、藍色表示);b)一群鋰原子的結晶過程;d) 單個鋰原子(紫色)與它的近鄰原子們(黃色);c)鋰原子態密度(DOAS)展示了不同類型鋰的原子能量分布;e)密排六方相HCP或面心立方相FCC構型向體心立方相BCC構型演變的示意圖。

隨機密排六方相rHCP-Li構型 (HCP 或 FCC 的混合物) 通過小的鋰原子運動轉變為 BCC-Li,如圖2e所示。當HCP-Li轉變為BCC-Li時,{0001}六角面通過向<110>方向收縮或向<001>方向伸長變為{110}面,其他原子平行于六角面沿 <110> 方向移動形成 BCC構型。

FCC-Li以類似的方式通過小的鋰原子運動轉變為BCC-Li(圖2e)。除了具有較低的能量外,從rHCP-Li到BCC-Li的輕松轉變也使rHCP-Li成為鋰結晶過程中有利的中間態。這種原子路徑遵循奧斯特瓦爾德分步規則,即在最終穩定狀態之前形成更高能量但動力學上有利的中間態(圖3)。

adad7a2a-03da-11ee-90ce-dac502259ad0.png

圖3. 鋰結晶的多步路徑示意圖。固態電解質中的Li+(桔色)先轉變為界面層中disordered-Li(青色)以及rHCP-Li(綠色),最后轉變為BCC-Li(藍色)。

adbc0f22-03da-11ee-90ce-dac502259ad0.png

圖4. Li-SE界面處的鋰結晶。a)具有納米團簇和摻雜劑的Li-SE界面模型;具有b)HCP-Li納米團簇和c)鈉摻雜劑(深藍)的Li-SE界面的原子結構;d)不同結構類型鋰的原子能;e)具有納米團簇、摻雜劑和鋰金屬體相的鋰能量變化;f-h)鋰金屬中不同近鄰結構構型下鋰原子數目;原始的Li-SE界面(紅色)、有鈉摻雜時的界面(橘色)、有HCP-Li納米團簇時的界面(藍色)。

【核心結論】

分子動力學模擬結果揭示了固態電解質界面處鋰結晶的多步驟原子路徑,這表明奧斯特瓦爾德分步規則已經擴展到單個原子態。奧斯特瓦爾德分步規則表明:在結晶過程中,在熱力學穩定相之前首先形成較高能量的中間相。在鋰結晶的多步原子路徑中(圖3),高能界面原子態(例如disordered-Li和/或rHCP-Li)首先作為中間體形成,遵循奧斯特瓦爾德分步規則,然后轉變為體相晶體原子(即BCC-Li)。在這個復雜的多步結晶過程中,這些界面原子態的動力學和能量學可以通過界面原子的原子態密度(DOAS)來闡明。

作為結晶路徑中間體的界面原子態是鋰金屬和固態電解質之間界面相互作用引起的,因此可以通過界面工程進行調整。相比之下,在液體電解質中,結晶是由形核粒子和表面原子介導的,例如表面上的吸附原子或空位,如 Terrace-Ledge-Kink模型所示。這種從界面原子態的角度對多步結晶路徑的理解可以提出通過固態電解質的界面工程促進結晶的合理策略。這些調整結晶原子路徑的界面工程策略為提高固態金屬電池金屬負極的電化學沉積性能提供了機理解釋和理論指導。





審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電解質
    +關注

    關注

    6

    文章

    814

    瀏覽量

    20071
  • HCP
    HCP
    +關注

    關注

    0

    文章

    6

    瀏覽量

    6898
  • 固態電池
    +關注

    關注

    10

    文章

    700

    瀏覽量

    27824
  • 固態電解質
    +關注

    關注

    0

    文章

    84

    瀏覽量

    5442

原文標題:馬里蘭大學Nat. Commun.: 莫一非團隊揭示固態電池中鋰金屬結晶機理

文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    高能金屬電池中的宏觀均勻界面層與鋰離子傳導通道

    ?? 研究簡介 大量的晶界固態電解質界面,無論是自然產生的還是人為設計的,都會導致金屬沉積不均勻,從而導致電池性能不佳?;诖耍本┖娇蘸教齑髮W宮勇吉教授和翟朋博博士、上??臻g電源研
    的頭像 發表于 12-04 09:13 ?357次閱讀
    高能<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池中</b>的宏觀均勻界面層與鋰離子傳導通道

    通過電荷分離型共價有機框架實現對金屬電池固態電解質界面的精準調控

    (-3.04 V vs SHE),被認為是次世代電池的最優選擇。然而,金屬負極的實際應用面臨諸多挑戰,其中最關鍵的問題是枝晶的生長和副反應的發生。這些問題不僅會導致
    的頭像 發表于 11-27 10:02 ?319次閱讀
    通過電荷分離型共價有機框架實現對<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b><b class='flag-5'>固態</b>電解質界面的精準調控

    欣界能源發布全球首創480Wh/kg高能量金屬固態電池

    近日,欣界能源在深圳隆重舉行了“獵鷹”高能量金屬固態電池全球發布會。此次發布會不僅吸引了眾多業內人士的關注,更標志著新能源領域的項重要突
    的頭像 發表于 11-22 13:37 ?293次閱讀

    欣界能源發布“獵鷹”金屬固態電池

    的界面處理技術和固態電解質配方。這些先進技術使得電池的單體能量密度得到了顯著提升,高達480Wh/kg。與傳統電池相比,這性能提升了倍以
    的頭像 發表于 11-18 11:44 ?502次閱讀

    固態金屬電池陽極夾層設計

    固態金屬電池(ASSLB)由于其高能量密度和高安全性而引起了人們的強烈興趣,金屬被認為是
    的頭像 發表于 10-31 13:45 ?219次閱讀
    全<b class='flag-5'>固態</b><b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的<b class='flag-5'>鋰</b>陽極夾層設計

    固態電池中復合陽極上固體電解質界面的調控

    采用固體聚合物電解質(SPE)的固態金屬電池(SSLMB)具有更高的安全性和能量密度,在下代儲能領域具有很大的應用前景。
    的頭像 發表于 10-29 16:53 ?446次閱讀
    <b class='flag-5'>固態</b><b class='flag-5'>電池中</b>復合<b class='flag-5'>鋰</b>陽極上固體電解質界面的調控

    新能源全固態電池成功量產

    近日,北京純新能源科技有限公司在蘭考縣量產工廠隆重舉辦全固態電池產品量產下線儀式。這里程碑式的成就標志著純新能源在全
    的頭像 發表于 10-18 17:19 ?2588次閱讀

    高能數造金屬固態電池小試級整線正式交付

    近日,國內領先的新能源技術解決方案提供商——高能數造,成功向家產業端客戶交付了其自主研發的金屬固態電池小試級整線設備,標志著公司在全
    的頭像 發表于 07-18 15:17 ?627次閱讀

    鈮酸調控固態電解質電場結構促進鋰離子高效傳輸!

    聚合物基固態電解質得益于其易加工性,最有希望應用于下固態金屬電池。
    的頭像 發表于 05-09 10:37 ?800次閱讀
    鈮酸<b class='flag-5'>鋰</b>調控<b class='flag-5'>固態</b>電解質電場結構促進鋰離子高效傳輸!

    固態金屬電池的外部壓力研究

    目前,使用易燃液體電解質的商用鋰離子電池無法滿足日益增長的高能量密度和安全性要求。用無機固態電解質(SSE)取代傳統的液體電解質有望在很大程度上消除固態電池本質安全問題。
    的頭像 發表于 04-26 09:02 ?949次閱讀
    <b class='flag-5'>固態</b><b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的外部壓力研究

    太藍新能源在固態金屬電池領域取得技術突破

     在此推動下,太藍新能源成功研制出全球首個具備車載等級,單體容量達120Ah,實際能量密度高達720Wh/kg的超級全固態金屬電池,刷新了體型化鋰
    的頭像 發表于 04-15 14:45 ?877次閱讀

    固態金屬電池負極界面設計

    固態金屬電池有望應用于電動汽車上。相比于傳統液態電解液,固態電解質不易燃,高機械強度等優點。
    的頭像 發表于 01-16 10:14 ?823次閱讀
    全<b class='flag-5'>固態</b><b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>負極界面設計

    金屬電池重大突破:10分鐘完成充電

    金屬電池
    深圳市浮思特科技有限公司
    發布于 :2024年01月10日 15:29:27

    金屬電池重大突破:10分鐘完成充電,可循環至少6000次

    金屬電池
    北京中科同志科技股份有限公司
    發布于 :2024年01月10日 09:19:17

    通過金屬負極/LPSCl界面調控實現超穩定全固態金屬電池

    為解決傳統鋰離子電池能量密度不足、安全性低等問題,部分研究者將目光投向全固態金屬電池
    的頭像 發表于 01-09 09:19 ?2107次閱讀
    通過<b class='flag-5'>金屬</b>負極/LPSCl界面調控實現超穩定全<b class='flag-5'>固態</b><b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>
    主站蜘蛛池模板: 亚洲精品国产乱码AV在线观看| 久久777国产线看观看精品卜| 手机观看毛片| 久久精品亚洲视频| 国产h视频在线观看免费| 在线观看中文| 我和黑帮老大第365天第2季在线| 蜜芽在线影片| 精品极品三大极久久久久| 成人免费观看国产高清| 2020年国产精品午夜福利在线观看| 无止侵犯高H1V3无止侵犯| 欧美最猛性xxxxx亚洲精品| 久久中文电影| 精品视频免费在线观看| 国产精品免费一区二区三区视频| 99热最新在线| 2012中文字幕在线动漫电影| 亚洲七七久久桃花综合| 午夜免费福利小电影| 色即是空 BT| 青青青手机视频| 暖暖在线观看播放视频| 狼人射综合| 久久九九亚洲精品| 九色终合九色综合88| 狠很橹快播| 韩国污动漫无遮掩无删减电脑版| 国产第81页| 国产a级午夜毛片| 第一次玩老妇真实经历| 办公室日本肉丝OL在线| 99视频在线免费| 99久久精品免费看国产免费| 37大但人文艺术A级都市天气 | 国产69精品9999XXXX| 成年人视频免费在线观看| qq快播电影网| 操中国老太太| 动漫女生的逼| 国产成人精品123区免费视频 |