Van Yang, Meng Wang, Lance Wu, 和 Aaron He
本文介紹如何使用ADI信號鏈進行超高頻(UHF)局部放電在線監測系統的RF前端設計。該前端靈敏度低,動態范圍高,可以滿足中國國家電網企業標準Q/GDW11059.8-2013"電氣設備通電試驗裝置技術規范第8部分:超高頻局部放電檢測器的技術規范"的要求,并且提供不錯的裕量。
簡介
根據IEC 60270標準,局部放電(PD)是兩個存在間隙的導電電極之間的部分絕緣區域發生的放電。局部放電被廣泛認為是電網內的電氣資產絕緣老化的最佳預警指示。
發生局部放電時,會產生具有較寬頻率范圍的信號,因此有4種針對不同頻率范圍的局部放電檢測技術。超聲波檢測技術針對20 kHz至~200 kHz頻率范圍,高頻電流互感器(HFCT)檢測技術針對3 MHz至~30 MHz頻率范圍,瞬態接地電壓(TEV)檢測技術針對3 MHz至~100 MHz頻率范圍,超高頻率(UHF)檢測技術針對300 MHz至~1500 MHz頻率范圍。UHF檢測技術具有高檢測靈敏度,廣泛用于氣體絕緣開關設備(GIS)、變壓器和環網柜(RMU)的局部放電在線監測系統中。
局部放電信號分析
根據Q/GDW11282-2014標準"氣體絕緣金屬封閉開關設備的局部放電UHF耦合器現場檢測規范"第7.1節,標準PD信號發生器可以產生以下PD脈沖信號特性:脈沖上升時間不超過300 ps,脈沖寬度在10 ns和500 ns之間。然后,利用該信息在Python中構建PD仿真器信號。上升時間為300 ps,下降時間為10 ns。脈沖信號峰值幅度為100 mV,峰峰值噪聲為10 mV。采樣速率為10 GSPS,采樣時間為10 μs。將脈沖置于采樣時間中間,上升波形和下降波形均進行線性擬合。
仿真的PD信號時域波形如圖1所示,頻域波形如圖2所示。根據圖2,能量最高的PD信號在1 GHz以下的頻率范圍內。脈沖上升時間低于300 ps時,更多能量分布在更高的頻率范圍內。
圖1. PD信號時域波形。
圖2. PD信號頻域波形。
在現代復雜的電磁環境中,UHF PD之間有很多工作頻率在300 MHz至1500 MHz之間的無線干擾信號。為了消除這種干擾,客戶一般會選擇300 MHz至1.5 GHz之間的子頻段來捕捉PD脈沖。正常情況下,約900 MHz左右的GSM的無線通信信號將會是最大的干擾信號。解決此問題的一種方法是采用帶阻濾波器(BRF)來抑制800 MHz至1000 MHz的信號。典型的子頻段劃分方案如表1所示。當然,子頻段劃分是靈活的,客戶可以根據實際的電磁環境進行調整。
子頻段 | 頻率范圍 |
全頻段 | 300 MHz 至 ~1500 MHz |
低通頻段 | 300 MHz 至 ~800 MHz |
高通頻段 | 1000 MHz 至 ~1500 MHz |
帶阻頻段 |
300 MHz 至 ~1500 MHz 抑制 800 MHz 至 ~1000 MHz 頻段 |
根據表1中的子頻段劃分,我們只保留圖2所示的PD信號頻譜的對應能量譜分量,然后執行快速傅里葉逆變換(IFFT)來研究在對應的濾波之后,時域波形會是什么樣子。濾波后的時域波形如圖3所示。根據圖3,在濾波之后,PD脈沖峰值會下降。濾波之后,PD脈沖上升時間會增加,下降時間會減少。濾波之后,在所有波形中,全頻段具有最大峰值,之后是帶阻頻段和低通頻段。高通頻段的峰值最小,但仍可捕捉到PD脈沖。
圖3. 濾波之后的PD信號時域波形。
使用ADI信號鏈的UHF PD檢測RF前端
可以使用ADI信號鏈開發帶4個通道的UHF PD檢測RF前端板。其中一個通道的框圖如圖4所示,整個電路板的前視圖如圖5所示。
圖4. UHF PD檢測RF前端板框圖。
圖5. UHF PD檢測RF前端板的前視圖。
這個前端的第一級是射頻增益模塊 ADL5611。ADL5611具有2.1 dB低噪聲系數(NF)和21 dBm高P1dB,可提供高動態范圍。ADL5611具有22 dB增益,在300 MHz至1500 Mhz UHF PD工作頻率內其增益極為平坦,具有低于0.4 dB的增益紋波。所有這些特性使得ADL5611非常適合UHF PD檢測應用。
第二級是基于電感電容的300 MHz至1500 MHz的帶通濾波器(BPF),該濾波器提供帶外干擾抑制。
第三級使用兩個單刀四擲(SP4T)射頻開關 HMC7992來實現頻段選擇電路。第1條RF路徑是直流至800 MHz低通路徑,第2條RF路徑是1 GHz高通路徑,第3條路徑是800 MHz至1 GHz的帶阻路徑,第4條路徑為直通路徑。根據不同的RF路徑選擇,客戶可以選擇不同的RF頻段,在沒有干擾或干擾最小的頻段內捕捉PD脈沖。HMC7992具有0.6 dB低插入損耗、45 dB高隔離度和33 dBm的高P0.1dB。
第4級是一個300 MHz至1500 MHz BPF,這與第2階段使用的BPF相同,可以進一步提供帶外干擾抑制。
最后一級是RF對數檢波器 ADL5513,它將UHF PD信號轉化為幾十MHz的低頻信號。所以,可以使用采樣速率為40 MSPS或65 MSPS的ADC將模擬PD信號轉化為數字信號。對于PD檢測應用,所需的RF檢波器主要特性為響應時間和動態范圍。ADL5513具有低至20 ns的響應時間和高至80 dB的動態范圍,所以非常適合用于PD檢測應用。RF對數檢波器 AD8318也適用于PD檢測應用。與ADL5513相比,它的響應時間更快,但動態范圍稍小。
測試結果
對該板的關鍵性能進行了測試,圖6至圖8為屏幕截圖。
圖6顯示的是從第一級輸入到最后一級ADL5513的輸入端口,設置在直通路徑上的S參數。圖中顯示,從300 MHz至1500 Mhz全頻段,增益約為14 dB,增益平坦度優于2 dB,輸入回波損耗優于–8 dB。
圖6. 從第一級輸入到最后一級ADL5513輸入在直通路徑下的S參數。
圖7顯示的是在PD工作的中心頻點900MHz,輸出電壓與輸入連續波信號的功率的響應曲線。使用輸入功率測量了兩個通道。根據測試結果,在–75 dBm至–5 dBm輸入功率范圍內,整個信號鏈具有線性響應。通道間的性能一致性也非常好。
圖7. 輸出電壓與輸入功率的關系。
圖8為輸入900 MHz連續波信號脈沖時測得的輸出波形。信號功率為–75 dBm,脈沖寬度為5 μs,脈沖周期為10 μs。根據該波形,當信號功率低至–75 dBm時,輸出信號的信噪比仍然相當可觀。
圖8. –75 dBm脈沖連續波輸入的輸出響應。
結論
本文展示了如何使用ADI信號鏈來構建UHF PD檢測板。這個完整的參考設計允許用戶靈活選擇不同頻段,以消除復雜電磁環境中的干擾。它還符合中國Q/GDW11059.8-2013標準的要求。
審核編輯:郭婷
-
ADI
+關注
關注
146文章
45819瀏覽量
249763 -
監測系統
+關注
關注
8文章
2719瀏覽量
81305 -
RF
+關注
關注
65文章
3050瀏覽量
166963
發布評論請先 登錄
相關推薦
評論