三維計(jì)算視覺研究?jī)?nèi)容包括:
1)三維匹配:兩幀或者多幀點(diǎn)云數(shù)據(jù)之間的匹配,因?yàn)榧す鈷呙韫馐芪矬w遮擋的原因,不可能通過一次掃描完成對(duì)整個(gè)物體的三維點(diǎn)云的獲取。因此需要從不同的位置和角度對(duì)物體進(jìn)行掃描。三維匹配的目的就是把相鄰掃描的點(diǎn)云數(shù)據(jù)拼接在一起。三維匹配重點(diǎn)關(guān)注匹配算法,常用的算法有最近點(diǎn)迭代算法 ICP和各種全局匹配算法。
2)多視圖三維重建:計(jì)算機(jī)視覺中多視圖一般利用圖像信息,考慮多視幾何的一些約束,射影幾何和多視圖幾何是視覺方法的基礎(chǔ),在攝影測(cè)量中類似的存在共線方程。光束平差法是該類研究的核心技術(shù)。這里也將點(diǎn)云的多視匹配放在這里,比如人體的三維重建,點(diǎn)云的多視重建不再是簡(jiǎn)單的逐幀的匹配,還需要考慮不同角度觀測(cè)產(chǎn)生誤差累積,因此存在一個(gè)針對(duì)三維模型進(jìn)行優(yōu)化或者平差的過程在里面。多視圖三維重建這里指的只是靜態(tài)建模,輸入是一系列的圖像或者點(diǎn)云集合。可以只使用圖像,或者只使用點(diǎn)云,也可以兩者結(jié)合(深度圖像)實(shí)現(xiàn),重建的結(jié)果通常是Mesh網(wǎng)格。
SFM(運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)) vs Visual SLAM[摘抄] SFM 和 Visual SLAM
Multi-View Stereo (MVS)多視圖立體視覺,研究圖像一致性,實(shí)現(xiàn)稠密重建。
3)3D SLAM
按照傳感器類型分類:可以分為基于激光的SLAM和基于視覺的SLAM。
基于激光的SLAM可以通過點(diǎn)云匹配(最近點(diǎn)迭代算法 ICP、正態(tài)分布變換方法 NDT)+位姿圖優(yōu)化(g2o、LUM、ELCH、Toro、SPA)來(lái)實(shí)現(xiàn);實(shí)時(shí)激光3D SLAM算法 (LOAM,Blam,CartoGrapher等);Kalman濾波方法。通常激光3D SLAM側(cè)重于定位,在高精度定位的基礎(chǔ)上可以產(chǎn)生3D點(diǎn)云,或者Octree Map。
基于視覺(單目、雙目、魚眼相機(jī)、深度相機(jī))的SLAM,根據(jù)側(cè)重點(diǎn)的不同,有的側(cè)重于定位,有的側(cè)重于表面三維重建。不過都強(qiáng)調(diào)系統(tǒng)的實(shí)時(shí)性。
(1)側(cè)重于定位的VSLAM系統(tǒng)比如orbSLAM,lsdSLAM;VINS是IMU與視覺融合的不錯(cuò)的開源項(xiàng)目。
(2)側(cè)重于表面三維重建SLAM強(qiáng)調(diào)構(gòu)建的表面最優(yōu),或者說表面模型最優(yōu),通常包含F(xiàn)usion融合過程在里面。通常SLAM是通過觀測(cè)形成閉環(huán)進(jìn)行整體平差實(shí)現(xiàn),優(yōu)先保證位姿的精確;而VSLAM通過Fusion過程同時(shí)實(shí)現(xiàn)了對(duì)構(gòu)建的表面模型的整體優(yōu)化,保證表面模型最優(yōu)。最典型的例子是KinectFusion,Kinfu,BundleFusion,RatMap等等。
(4)目標(biāo)檢測(cè)與識(shí)別:無(wú)人駕駛汽車中基于激光數(shù)據(jù)檢測(cè)場(chǎng)景中的行人、汽車、自行車、道路(車道線,道路標(biāo)線,路邊線)以及道路設(shè)施(路燈)和道路附屬設(shè)施(行道樹等)。這部分工作也是高精度電子地圖的主要內(nèi)容。當(dāng)然高精度電子地圖需要考慮的內(nèi)容更多。同時(shí)室內(nèi)場(chǎng)景的目標(biāo)識(shí)別的研究?jī)?nèi)容也很豐富,比如管線設(shè)施,消防設(shè)施等。
(5)形狀檢測(cè)與分類:點(diǎn)云技術(shù)在逆向工程中有很普遍的應(yīng)用。構(gòu)建大量的幾何模型之后,如何有效的管理,檢索是一個(gè)很困難的問題。需要對(duì)點(diǎn)云(Mesh)模型進(jìn)行特征描述,分類。根據(jù)模型的特征信息進(jìn)行模型的檢索。同時(shí)包括如何從場(chǎng)景中檢索某類特定的物體,這類方法關(guān)注的重點(diǎn)是模型。
(6)語(yǔ)義分類:獲取場(chǎng)景點(diǎn)云之后,如何有效的利用點(diǎn)云信息,如何理解點(diǎn)云場(chǎng)景的內(nèi)容,進(jìn)行點(diǎn)云的分類很有必要,需要為每個(gè)點(diǎn)云進(jìn)行Labeling。可以分為基于點(diǎn)的分類方法和基于分割的分類方法。從方法上可以分為基于監(jiān)督分類的技術(shù)或者非監(jiān)督分類技術(shù),深度學(xué)習(xí)也是一個(gè)很有希望應(yīng)用的技術(shù)。最近深度學(xué)習(xí)進(jìn)行點(diǎn)云場(chǎng)景理解的工作多起來(lái)了,比如PointNet,各種八叉樹的Net。
(7)雙目立體視覺與立體匹配ZNCC:立體視覺(也稱雙目視覺)主要研究的兩個(gè)相機(jī)的成像幾何問題,研究?jī)?nèi)容主要包括:立體標(biāo)定(Stereo Calibration)、立體校正(Stereo Rectification)和立體匹配(Stereo Matching)。目前,立體標(biāo)定主要研究的已經(jīng)比較完善,而立體匹配是立體視覺最核心的研究問題。按照匹配點(diǎn)數(shù)目分類,立體匹配可分為稀疏立體匹配(sparse stereo matching)和密集立體匹配(dense stereo matching)。稀疏立體匹配由于匹配點(diǎn)數(shù)量稀少,一般很難達(dá)到高精度移動(dòng)測(cè)量和環(huán)境感知的要求。因此,密集立體匹配是學(xué)術(shù)界和工業(yè)界的主要研究和應(yīng)用方向。
(8)自動(dòng)造型(構(gòu)型),快速造型(構(gòu)型)技術(shù)。對(duì)模型進(jìn)行凸分割,模型剖分,以實(shí)現(xiàn)模型進(jìn)一步的編輯修改,派生出其他的模型。
(9)攝像測(cè)量技術(shù),視頻測(cè)量
1、點(diǎn)云濾波方法(數(shù)據(jù)預(yù)處理):
雙邊濾波、高斯濾波、條件濾波、直通濾波、隨機(jī)采樣一致性濾波。
VoxelGrid
2、關(guān)鍵點(diǎn)
ISS3D、Harris3D、NARF,
SIFT3D、均勻采樣,曲率方法采樣
3、特征和特征描述
法線和曲率計(jì)算NormalEstimation、特征值分析Eigen-Analysis、EGI
PFH、FPFH、3D Shape Context、Spin Image
4、點(diǎn)云匹配
ICP、穩(wěn)健ICP、point to plane ICP、Point to line ICP、MBICP、GICP、NICP
NDT 3D、Multil-Layer NDT
FPCS、KFPCS、SAC-IA
Line Segment Matching、ICL
5、點(diǎn)云分割與語(yǔ)義分類
分割:區(qū)域生長(zhǎng)、八叉樹區(qū)域生長(zhǎng)、Ransac線面提取、NDT-RANSAC、全局優(yōu)化平面提取
K-Means、Normalize Cut(Context based)
3D Hough Transform(線、面提取)、連通分析、
分類:基于點(diǎn)的分類,基于分割的分類;監(jiān)督分類與非監(jiān)督分類
目前基于深度學(xué)習(xí)的點(diǎn)云語(yǔ)義分類比較熱:PointNet,OctNet之類的吧,需要多加關(guān)注。
6、SLAM圖優(yōu)化
Ceres(Google的最小二乘優(yōu)化庫(kù),很強(qiáng)大),g2o、LUM、ELCH、Toro、SPA
SLAM方法:ICP、MBICP、IDC、likehood Field、CrossCorrelation、NDT
7、目標(biāo)識(shí)別、檢索
Hausdorff距離計(jì)算(人臉識(shí)別),Graph Matching
8、變化檢測(cè)
基于八叉樹的變化檢測(cè)
9. 三維重建
泊松重建、Delaunay triangulations
表面重建,人體重建,建筑物重建,樹木重建。
結(jié)構(gòu)化重建:不是簡(jiǎn)單的構(gòu)建一個(gè)Mesh網(wǎng)格,而是為場(chǎng)景進(jìn)行分割,為場(chǎng)景結(jié)構(gòu)賦予語(yǔ)義信息。場(chǎng)景結(jié)構(gòu)有層次之分,在幾何層次就是點(diǎn)線面等幾何圖元。
實(shí)時(shí)重建:重建植被或者農(nóng)作物的4D(3D+時(shí)間)生長(zhǎng)態(tài)勢(shì);人體姿勢(shì)識(shí)別;表情識(shí)別;
10.點(diǎn)云數(shù)據(jù)管理
點(diǎn)云壓縮,點(diǎn)云索引(KD、Octree),點(diǎn)云LOD(金字塔),海量點(diǎn)云的渲染
責(zé)任編輯:彭菁
-
三維
+關(guān)注
關(guān)注
1文章
507瀏覽量
28967 -
建模
+關(guān)注
關(guān)注
1文章
304瀏覽量
60765 -
計(jì)算視覺
+關(guān)注
關(guān)注
0文章
5瀏覽量
1523
原文標(biāo)題:三維點(diǎn)云數(shù)據(jù)處理學(xué)習(xí)內(nèi)容總結(jié)
文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論