在這篇應(yīng)用文章中,講述了一個(gè)我們上海昊量光電設(shè)備有限公司真實(shí)的世界故事,我們的一個(gè)客戶如何用Moku:Lab替換了幾個(gè)復(fù)雜的電子設(shè)備,并使用Pound-Drever-Hall (PDH)技術(shù)將Innolight Prometheus激光器的頻率鎖定在一個(gè)超穩(wěn)腔內(nèi)的Moku:Lab產(chǎn)品。
一、介紹
Pound-Drever-Hall(PDH)技術(shù)是一種主動(dòng)鎖頻技術(shù),是目前激光穩(wěn)頻系統(tǒng)中性能最好的手段之一,由 R.V. Pound,Ronald Drever 和 John L在19831年首次提出的。利用Fabry-Perot(F-P)腔穩(wěn)頻的激光系統(tǒng)是最常見的一種穩(wěn)頻方法。當(dāng)激光被射入一個(gè)F-P腔中時(shí),它會(huì)被反射、透射或吸收,腔的長度越接近激光器的精確波長的一半,激光器的能量就會(huì)被傳輸?shù)脑竭h(yuǎn)。不幸的是,激光的頻率和腔長的連續(xù)變化取決于一系列的因素,如環(huán)境溫度、注入電流和量子波動(dòng)。PDH鎖定利用從諧振腔反射出來的光來產(chǎn)生一個(gè)誤差信號,來對諧振腔的長度或激光器的頻率進(jìn)行微調(diào),從而完成腔長和激光頻率的某種匹配,以達(dá)到最大限度地實(shí)現(xiàn)遠(yuǎn)距離傳輸。
根據(jù)框圖簡單說一下PDH技術(shù),激光器輸出頻率為ω的激光,然后經(jīng)過EOM晶體(electric-optical modulator)電光調(diào)制器,對激光光場進(jìn)行射頻電光相位調(diào)制,然后將調(diào)制后的激光信號經(jīng)過偏振分束棱鏡(PBS)與四分之一波片(λ/4)進(jìn)入光學(xué)腔,然后與光學(xué)腔諧振,然后通過反射到達(dá)光電探測器,偏振分束棱鏡(PBS)與四分之一波片(λ/4)的作用就是讓腔反射光進(jìn)入探測器。然后對反射光信號進(jìn)行相位解調(diào),得到反射光中的頻率失諧信息,產(chǎn)生誤差信號,然后通過低通濾波器和比例積分電路處理后,反饋到激光器的壓電陶瓷或者聲光調(diào)制器等其他響應(yīng)器件,進(jìn)行頻率補(bǔ)償,最終實(shí)現(xiàn)將普通激光鎖定在超穩(wěn)光學(xué)腔上。關(guān)于PDH技術(shù)的理論細(xì)節(jié)可以在一些綜述論文和學(xué)位論文中找到。為了實(shí)現(xiàn)PDH鎖定,需要一些專用的和定制的電子儀器,包括信號發(fā)生器,混頻器和低通濾波器。Moku:Lab的激光鎖盒集成了大部分的PDH電子儀器,在提供高精度的激光穩(wěn)頻功能上是具有獨(dú)一的,緊湊的,易于使用的儀器。
圖1:PDH穩(wěn)頻系統(tǒng)原理圖
二、實(shí)驗(yàn)裝置
Moku:Lab的激光鎖盒集成了波形發(fā)生器、混頻器、低通濾波器和用于PDH鎖定的雙級聯(lián)PID控制器。通過調(diào)節(jié)激光腔的長度,可以監(jiān)測反射光的振幅,并在屏幕上實(shí)時(shí)顯示PDH信號。用戶只需輕輕一敲就可以將激光鎖定在任何過零點(diǎn)。
圖2:主用戶界面Moku:Lab激光鎖盒
在一個(gè)示例設(shè)置中,Prometheus激光器(Innolight, 20NE)的出射光由電光調(diào)制器(EOM, iXBlue, NIR-MPX-LN-0.1)調(diào)制,照射到由三鏡環(huán)形腔(168 mm,即1.78 GHz的FSR),此腔體線寬為190 kHz。反射光被輸入耦合器即時(shí)反射捕獲。用兩個(gè)光電二極管(PD, Thorlabs, PDA05CF2)來檢測腔體的透射光和反射光。PD上檢測到的信號被輸入到Moku:Lab的輸入1(混頻器輸入,交流耦合電阻50 Ω)和輸入2(監(jiān)視器,直流耦合電阻50 Ω)。利用Moku的激光鎖盒波形發(fā)生器,在3.0 MHz的頻率下產(chǎn)生了500 mVpp的本振(LO)信號。然后LO信號從Moku:Lab的輸出2輸出,通過偏置器 (miniccircuits, ZFBT-6G+)驅(qū)動(dòng)EOM。用LO數(shù)字信號波形解調(diào)來自光學(xué)腔的反射響應(yīng)信號,這里我們用到了數(shù)字混頻器和角頻300.0 kHz的四階數(shù)字低通濾波器。通過掃描空腔共振的激光頻率,調(diào)整相位延遲,直到誤差信號峰-峰電壓(斜率)最大,從而調(diào)整混頻器處LO信號的相移。
快速PID控制器的積分器單位增益頻率(0 dB點(diǎn))為5.8 kHz,初始積分器飽和角為100 Hz。然后將快速PID的輸出1直接連接到激光器的壓電陶瓷上來驅(qū)動(dòng)激光頻率。在掃描模式下,該輸出也會(huì)產(chǎn)生斜坡信號來發(fā)現(xiàn)空腔諧振。低頻PID控制器的比例增益為-32.2 dB,積分器交叉頻率為200 mHz。Moku:Lab的輸出2出來后通過Bias-Tee分成了兩路,一路到了EOM,一路到了激光的溫度控制BNC接口端。在該激光溫度致動(dòng)器上放置了一個(gè)20dB的衰減(Minicircuits, HAT-20+),以降低其靈敏度。
圖3:利用Moku:Lab建立的PDH技術(shù)的實(shí)驗(yàn)裝置
三、利用Moku:Lab進(jìn)行的PDH激光穩(wěn)頻
為了鎖定PDH,PDH讀出信號首先在激光鎖定模式下由斜坡掃描產(chǎn)生。緩慢的溫度偏移被調(diào)整,以使空腔共振接近掃描范圍的中間。輕觸一下界面中間的過零點(diǎn)選擇為鎖定點(diǎn)。這用到了快速PID控制器,并且把激光頻率鎖定在腔中。然后關(guān)閉積分器飽和,使激光頻率達(dá)到腔體的直流頻率。然后使用慢速控制器,這樣排除了激光器的壓電轉(zhuǎn)換器(PZT)在低于0.1 Hz頻率下的控制工作,并確保激光器在大環(huán)境范圍變化(辦公室/實(shí)驗(yàn)室)的條件下保持鎖定。
圖4:PDH誤差信號繪制和點(diǎn)擊鎖定過零點(diǎn)示意圖
圖5:PID控制器配置示意圖
四、結(jié)果和討論
通過監(jiān)控傳輸?shù)墓怆娞綔y器功率,并通過ccd相機(jī)(也可以使用紅外敏感觀察卡)查看傳輸過程中的激光模式形狀,來驗(yàn)證激光對腔和TEM00模式的鎖定。這些監(jiān)測信號的時(shí)域信息很容易在Moku:Lab的激光鎖盒功能內(nèi)置的示波器中實(shí)時(shí)查看。
利用內(nèi)置的示波器測量特性來捕捉誤差信號均方根RMS,對整個(gè)環(huán)路的增益進(jìn)行了基本優(yōu)化。增加增益使誤差信號的均方根最小;太多的增益會(huì)引起振蕩,太少的增益意味著激光頻率擾動(dòng)仍然沒有得到充分的抑制。進(jìn)一步的環(huán)路性能改進(jìn)可以通過頻域優(yōu)化來實(shí)現(xiàn),這可以通過在Moku:Lab輸出1和激光壓電之間注入掃頻正弦擾動(dòng)來實(shí)現(xiàn),激光壓電使用了求和前置放大器,并可以測量回路中注入擾動(dòng)的抑制。這樣的測量可以進(jìn)行使用第二個(gè)Moku:Lab的功能:頻率響應(yīng)分析儀。在這些高度優(yōu)化的配置中,環(huán)路的單位增益頻率應(yīng)該優(yōu)化到30-60 kHz(高于這通常相對于激光的壓電響應(yīng)速度快很多)。
在一次測試中,使用單腔雙激光測試驗(yàn)證了控制回路的性能。第二個(gè)激光器被鎖定在腔內(nèi)一個(gè)自由光譜范圍(FSR)上,第一個(gè)激光器的鎖與第二個(gè)具有相同的Moku:Lab激光鎖盒設(shè)置。在兩個(gè)獨(dú)立頻率的鎖定下,比較了兩種激光器在相同的普通腔的噪聲,獨(dú)立的電子噪聲和Moku數(shù)字化噪聲。這兩種鎖定激光器之間的剩余頻率變化與腔間隔噪聲、腔涂層的熱噪聲和來自實(shí)驗(yàn)室環(huán)境的常見振動(dòng)無關(guān),這種噪聲僅由控制回路和傳感器產(chǎn)生,測量方法是將來自兩個(gè)激光路徑的光結(jié)合到一個(gè)高速光電探測器中,與一個(gè)穩(wěn)定的GHz函數(shù)發(fā)生器混頻,并使用第三個(gè)Moku:Lab儀器,一個(gè)相位表,來跟蹤頻率偏差。Moku:Lab相位表通過產(chǎn)生相對頻率噪聲的ASD來讀出剩余頻率噪聲。我們得到了在每個(gè)環(huán)路10 Hz的情況下,控制回路的殘余噪聲是0.1 Hz/ Hz。腔激光鎖模的真實(shí)絕對性能最終受到基頻熱涂層噪聲的限制。
-
FPGA
+關(guān)注
關(guān)注
1630文章
21778瀏覽量
604822
發(fā)布評論請先 登錄
相關(guān)推薦
評論