色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

魚與熊掌皆可得?當SiC MOSFET遇上2L-SRC

英飛凌工業半導體 ? 2022-05-27 15:22 ? 次閱讀

引言

事物皆有兩面:SiC MOSFET以更快的開關速度,相比IGBT可明顯降低器件開關損耗,提升系統效率和功率密度;但是高速的開關切換,也產生了更大的dv/dt和di/dt,對一些電機控制領域的電機絕緣和EMI設計都帶來了額外的挑戰。

應用痛點

氫燃料系統中的高速空壓機控制器功率35kW上下,轉速高達10萬轉以上,輸出頻率可達2000Hz,調制頻率50kHz以上是常見的設計,SiC MOSFET是很好的解決方案。

但是,SiC的高dv/dt和諧波會造成空壓機線包發熱和電機軸電流。

一般的對策有二:

1.采用大的柵極電阻去驅動SiC MOSFET,抑制dv/dt,但會顯著增加開關損耗,影響效率。

2.采用輸出濾波器抑制諧波電流、降低電機側的dv/dt,但體積會占控制器的三分之一以上,增加成本,同時濾波器的引入也會造成一定損耗。

以上兩種典型設計,以犧牲損耗和效率為代價,似乎“魚與熊掌,不可兼得”……

e898b726-dd1b-11ec-b80f-dac502259ad0.jpg

英飛凌解決方案

針對上述設計痛點,英飛凌創新地推出了2L-SRC系列驅動IC,結合SiC開關特性進行Rg的優化配置,以期兩全之美,具體過程請看下文分解:

SiC開關特性

圖1是SiC的開關特性示意圖,描述了dv/dt與Ic,dv/dt與Rg,Esw與Rg之間的關系

e8b152a4-dd1b-11ec-b80f-dac502259ad0.png

圖1(a)

e8d2955e-dd1b-11ec-b80f-dac502259ad0.png

圖1(b)

由上圖1的曲線可知:SiC的dv/dt最大值會出現在小電流開通和大電流關斷的時候,通過增加Rgon和Rgoff可以分別降低開通和關斷的dv/dt最值,但是SiC的開關損耗Esw將隨之增加。

利用2L-SRC的解題思路

其實解題之術不難。去年英飛凌業就推出了2L-SRC的驅動IC,結合電機控制領域的IGBT開關特性,提出小電流用大Rg,大電流用小Rg的方法來解決(具體請參考文末的AN文檔)。

此處我們依然可以借鑒其思路,針對SiC MOSFET開關特性,展開相應的Rg優化策略。

為了便于大家理解整個過程,本文依據圖1的SiC趨勢曲線,假定了圖2和圖3中的相關曲線,作為后續2L-SRC驅動IC優化Rg和電路仿真分析的基礎。

(圖2和圖3曲線基于合理性假設,僅供原理參考,真實曲線應以SiC實測為準。)

優化配置dv/dt(on)時的開通電阻Rgon策略

e8ebc664-dd1b-11ec-b80f-dac502259ad0.png

圖2.1200V SiC MOSFET dv/dt(on)與Ic關系曲線

由SiC開通dv/dt特性,假設Rgon=5Ω和Rgon=10Ω兩條曲線,和預設的dv/dt限制值如圖2;可根據輸出電流Ic大小,將Rgon分成兩部分,在電流Id=[0,50A]的區間采用Rgon=10Ω開通,在電流=[50A,200A]的區間換成Rgon=5Ω開通。相比傳統驅動方案(全電流范圍都要用Rgon=10Ω),可以在中大電流區間(50A,200A]獲得小電阻開通的Eon損耗優勢。

優化配置dv/dt(off)時的關斷電阻Rgoff策略

e9162db4-dd1b-11ec-b80f-dac502259ad0.png

圖3.1200V SiC MOSFET dv/dt(off)與Ic關系曲線

同樣由SiC關斷dv/dt特性,我們也可以把電流區間一分為二,如下圖假設的條件曲線,在電流=[133A,200A]采用大電阻Rgoff=12Ω關斷,而在電流=[0A,133A]采用小電阻Rgoff=6Ω關斷。相比傳統驅動方案(全電流范圍都要用Rgoff=12Ω),可以在中小電流區間[0A,133A]獲得小電阻關斷的Eoff損耗優勢。

優化配置dv/dt的驅動策略小結

根據上述案例分析,優化了驅動電阻Rg控制策略,將電流分成了小電流、中電流、大電流的三部分區間,分別對應不同的門極電阻設置,然后在預定的電流閾值進行Rgon和Rgoff的切換,以達到優化驅動的目的,如下圖所示:

e93a55ea-dd1b-11ec-b80f-dac502259ad0.png

圖4.基于圖2和圖3的驅動電阻Rg控制策略

基于2L-SRC的驅動電路實現

依據上述的思路和流程,相關的驅動電阻Rg配置策略不難得到。

古人云“工欲善其事,必先利其器”,如何用2L-SRC驅動IC來實現呢?

2L-SRC驅動IC產品與功能簡介

e94e976c-dd1b-11ec-b80f-dac502259ad0.png

圖5.2L-SRC(1ED3240MC12H)功能框圖

2L-SRC的典型功能框圖,如圖5所示,簡潔的8pin設計。只是在常規IN輸入和OUT輸出之外,又增加了一組OUTF輸出。根據/INF信號與IN信號電平之間的邏輯關系,可以靈活配置OUTF狀態,在常規OUT輸出的開通和關斷時刻發生作用。

結合下圖,可以更直觀理解2L-SRC驅動IC外接門極電阻時,主要的四種狀態:

e9b8cf92-dd1b-11ec-b80f-dac502259ad0.png

圖6.2L-SRC(1ED3240MC12H)驅動電阻Rg配置示意圖

當OUTF僅在開通時使能,則開通電阻Rgon=R1//R3,關斷電阻Rgoff=R2;

當OUTF僅在關斷時使能,則關斷電阻Rgoff=R2//R4,開通電阻Rgon=R1;

當OUTF同時開通和關斷使能,則開通電阻Rgon=R1//R3,關斷電阻Rgoff=R2//R4;

當OUTF開通和關斷皆不使能,則開通電阻Rgon=R1,關斷電阻Rgoff=R2;

有關OUTF與控制信號/INF和輸入信號IN之間的狀態關系,如圖7所示,規格書有詳盡解讀,這里就不贅述了:

e9cde68e-dd1b-11ec-b80f-dac502259ad0.png

圖7.OUTF與輸入IN和控制/INF之間的狀態關系圖((1ED3240MC12H))

關于OUTF的核心邏輯就是:

開通時刻,在輸入信號IN電平跳高時,/INF信號為低電平(0),則OUTF在開通時刻使能;

關斷時刻,在輸入信號IN電平跳低時,/INF信號為高電平(1),則OUTF在關斷時刻使能。

2L-SRC驅動的Rg配置(基于圖4控制策略)

基于2L-SRC驅動IC的控制邏輯,和上述SiC案例中的的驅動電阻Rg優化控制策略,我們可以進一步將2L-SRC驅動IC的配置細化如下:

e9e5ec7a-dd1b-11ec-b80f-dac502259ad0.png

圖8.基于圖4的2L-SRC(1ED3240MC12H)驅動電阻Rg示意圖

基于圖8的驅動電阻配置可得:R1=10Ω,.R2=12Ω, R3=10Ω,R4=12Ω

最終的驅動和控制策略如下:

當電流=[0,50A]時,/INF為波形序列A,OUTF只在關斷時刻使能,此時Rgon=R1=10Ω,Roff=R2//R4=12//12=6Ω;

當電流=(50A,133A]時,/INF為波形序列B,OUTF在開通和關斷時刻皆使能,此時Rgon=R1//R3=10//10=5Ω,Rgoff=R2//R4=12//12=6Ω;

當電流=(133,200A]時,/INF為波形序列C,OUTF只在開通時刻使能,此時Rgon=R1//R3=10//10=5Ω,Rgoff=R2=12Ω;

PS:為了實現在不同電流區間,給出不同的/INF波形序列,或增加一路簡單的控制閉環。例如,對輸出電流值進行實時采樣或估算,判斷瞬時電流所在電流區間,然后通過上位機(如CPLDDSP等)給出對應的信號,到驅動IC的/INF引腳。

應用案例仿真參考

基于上述2L-SRC的可變Rg配置策略,我們搭建了PLECS電路,參考高速空壓機的應用條件,選取了SiC半橋模塊,進行兩電平三相逆變電路的仿真驗證和對比。

相關仿真條件如下:

SiC Easy半橋模塊:FF6MR12W2M1_B70 (1200V/200A AlN)

散熱器溫度Th=50C,Fsw=50kHz,fo=1kHz, Io=142Arms,Vdc=600V,Modi=1.0,SVPWM,PF=0.95

傳統驅動方案:Rgon=10Ω,Rgoff=12Ω,Rg全范圍固定阻值

2L-SRC驅動方案:Rgon=5、10Ω,Rgoff=6、12Ω,Rg隨電流區間切換(圖8)

ea068368-dd1b-11ec-b80f-dac502259ad0.png

圖9.傳統Rg控制與2L-SRC Rg控制的仿真結果對比

全文總結

文章結合SiC開關特性和2L-SRC驅動IC的Rg優化配置,再加上基于一定合理性假設的SiC案例分析,以及最后的仿真對比,效果已然呈現。

回顧開題:2L-SRC+SiC,魚與熊掌皆可得乎?想必大家心中已有答案。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • asic
    +關注

    關注

    34

    文章

    1209

    瀏覽量

    121108
收藏 人收藏

    評論

    相關推薦

    Nexperia SiC MOSFET LTspice模型使用指南

    電子發燒友網站提供《Nexperia SiC MOSFET LTspice模型使用指南.pdf》資料免費下載
    發表于 02-13 17:21 ?0次下載
    Nexperia <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b> LTspice模型使用指南

    溝槽型SiC MOSFET的結構和應用

    MOSFET(U-MOSFET)作為新一代功率器件,近年來備受關注。本文將詳細解析溝槽型SiC MOSFET的結構、特性、制造工藝、應用及其技術挑戰。
    的頭像 發表于 02-02 13:49 ?275次閱讀

    SiC MOSFET的參數特性

    碳化硅(SiCMOSFET作為寬禁帶半導體材料(WBG)的一種,具有許多優異的參數特性,這些特性使其在高壓、高速、高溫等應用中表現出色。本文將詳細探討SiC MOSFET的主要參數特
    的頭像 發表于 02-02 13:48 ?286次閱讀

    40mR/650V SiC 碳化硅MOSFET,替代30mR 超結MOSFET或者20-30mR的GaN!

    BASiC基本半導體40mR/650V SiC 碳化硅MOSFET,替代30mR 超結MOSFET或者20-30mR的GaN! BASiC基本半導體40mR/650V SiC 碳化硅
    發表于 01-22 10:43

    驅動Microchip SiC MOSFET

    電子發燒友網站提供《驅動Microchip SiC MOSFET.pdf》資料免費下載
    發表于 01-21 13:59 ?0次下載
    驅動Microchip <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>

    SiC MOSFET分立器件及工業模塊介紹

    BASiC國產SiC碳化硅MOSFET分立器件及碳化硅功率SiC模塊介紹
    發表于 01-16 14:32 ?0次下載

    國產SiC MOSFET,正在崛起

    來源:電子工程世界 SiC(碳化硅),已經成為車企的一大賣點。而在此前,有車企因是否全域采用SiC MOSFET,發生激烈輿論戰。可見,SiC這一市場在汽車領域頗有潛力。 不過,近幾年
    的頭像 發表于 01-09 09:14 ?180次閱讀
    國產<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>,正在崛起

    什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?

    具有決定性的影響。因此,深入理解柵極氧化層的特性,并掌握其可靠性測試方法,對于推動碳化硅 MOSFET的應用和發展具有重要意義。今天的“SiC科普小課堂”將聚焦于“柵極氧化層”這一新話題:“什么是柵極
    發表于 01-04 12:37

    三菱電機1200V級SiC MOSFET技術解析

    1200V級SiC MOSFET是一種能充分發揮SiC優勢的器件,廣泛應用于工業、汽車等領域。目前,1200V級SiC MOSFET被多家器
    的頭像 發表于 12-04 10:50 ?1072次閱讀
    三菱電機1200V級<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>技術解析

    應用筆記 | SiC模塊并聯驅動振蕩的抑制方法

    SiC MOSFET與傳統Si器件相比,具有高電壓、大電流、高速驅動、低損耗、高溫穩定等諸多優點,是新一代器件。近年來,利用這些優異特性,作為向大功率發展的電動汽車 (EV) 的牽引逆變器電路,并聯
    發表于 11-27 14:23

    SiC MOSFET模塊封裝技術及驅動設計

    碳化硅作為一種寬禁帶半導體材料,比傳統的硅基器件具有更優越的性能。碳化硅SiC MOSFET作為一種新型寬禁帶半導體器件,具有導通電阻低,開關損耗小的特點,可降低器件損耗,提升系統效率,更適合應用于高頻電路。碳化硅SiC
    的頭像 發表于 10-16 13:52 ?2743次閱讀
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>模塊封裝技術及驅動設計

    SiC MOSFETSiC SBD的區別

    SiC MOSFET(碳化硅金屬氧化物半導體場效應晶體管)和SiC SBD(碳化硅肖特基勢壘二極管)是兩種基于碳化硅(SiC)材料的功率半導體器件,它們在電力電子領域具有廣泛的應用。盡
    的頭像 發表于 09-10 15:19 ?2379次閱讀

    如何更好地驅動SiC MOSFET器件?

    IGBT的驅動電壓一般都是15V,而SiC MOSFET的推薦驅動電壓各品牌并不一致,15V、18V、20V都有廠家在用。更高的門極驅動電壓有助于降低器件導通損耗,SiC MOSFET
    的頭像 發表于 05-13 16:10 ?760次閱讀

    溝槽當道,平面型SiC MOSFET尚能飯否?

    SiC MOSFET,安森美稱其為M3S。 ? M3S產品導通電阻規格分為13/22/30/40/70mΩ,適配TO247?3L/4L和D2
    的頭像 發表于 04-08 01:55 ?4144次閱讀

    水下航行器電機的SiC MOSFET逆變器設計

    利用 SiC 功率器件開關頻率高、開關損耗低等優點, 將 SiC MOSFET 應用于水下航行器大功率高速電機逆變器模塊, 對軟硬件進行設計。
    發表于 03-13 14:31 ?417次閱讀
    水下航行器電機的<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>逆變器設計
    主站蜘蛛池模板: 国产SUV精品一区二区883 | 动漫女主被扒开双腿羞辱 | 在线国内自拍精品视频 | 日韩精品在线看 | 俄罗斯大白屁股 | 午夜一级免费视频 | 超碰97视频在线观看 | 一级毛片免费播放 | 十八禁久久成人一区二区 | 全免费A敌肛交毛片免费懂色AV | 肉耽高h一受n攻 | 久久久久久极精品久久久 | 久久精品免费看网站 | 毛片无码免费无码播放 | jizz国产丝袜18老师美女 | 伦理片92伦理午夜 | 久久这里只有精品国产精品99 | 中文字幕免费在线视频 | 亚洲欧美综合乱码精品成人网 | 久久视频在线视频观看天天看视频 | 伊人久久精品AV无码一区 | 99日韩精品 | 伸进同桌奶罩里摸她胸作文 | 超碰caoporen国产 | 日本浴室日产在线系列 | 5G在线观看免费年龄确认18 | 亚洲第一免费播放区 | 欧美一道本一区二区三区 | 久久精品国产在热亚洲完整版 | WWW亚洲精品久久久无码 | 97色伦久久视频在观看 | 国产精品久久一区二区三区蜜桃 | 欧美xx69| 杨幂视频1分11未删减在线观看 | 女人被躁到高潮嗷嗷叫免费 | 国产精品成人影院在线观看 | 亚洲三区视频 | 久久精品小视频 | 亚洲阿v天堂在线2017 | 亚洲精品AV一区午夜福利 | 海角社区在线视频播放观看 |