關鍵詞:半導體芯片,膠粘劑(膠水、粘接劑),膠接工藝,膠粘技術
引言:膠接是通過具有黏附能力的物質,把同種或不同種材料牢固地連接在起的方法。具有黏附能力的物質稱為膠粘劑或黏合劑,被膠接的物體稱為被粘物,膠粘劑和被黏物構成的組件稱為膠接接頭。其主要優(yōu)點是操作簡單、生產率高;工藝靈活、快速、簡便;接頭可靠、牢固、美觀產品結構和加工工藝簡單;省材、省力、成本低、變形小。容易實現(xiàn)修舊利廢接技術可以有效地應用于不同種類的金屬或非金屬之間的聯(lián)接等。膠水的固化方式,一般有以下幾種:1、常溫固化;2、加熱固化;3、UV固化;4、復合型固化。
半導體封裝
一
定義
半導體封裝是指將通過測試的晶圓按照產品型號及功能需求加工得到獨立芯片的過程。封裝過程為:來自晶圓前道工藝的晶圓通過劃片工藝后被切割為小的晶片(Die),然后將切割好的晶片用膠水貼裝到相應的基板(引線框架)架的小島上,再利用超細的金屬(金錫銅鋁)導線或者導電性樹脂將晶片的接合焊盤(Bond Pad)連接到基板的相應引腳(Lead),并構成所要求的電路;然后再對獨立的晶片用塑料外殼加以封裝保護,塑封之后還要進行一系列操作,封裝完成后進行成品測試,通常經過入檢Incoming、測試Test和包裝Packing等工序,最后入庫出貨。半導體制造的工藝過程由晶圓制造(Wafer Fabr ication)、晶圓測試(wafer Probe/Sorting)、芯片封裝(Assemble)、測試(Test)以及后期的成品(Finish Goods)入庫所組成。半導體器件制作工藝分為前道和后道工序,晶圓制造和測試被稱為前道(Front End)工序,而芯片的封裝、測試及成品入庫則被稱為后道(Back End)工序,前道和后道一般在不同的工廠分開處理。前道工序是從整塊硅圓片入手經多次重復的制膜、氧化、擴散,包括照相制版和光刻等工序,制成三極管、集成電路等半導體元件及電極等,開發(fā)材料的電子功能,以實現(xiàn)所要求的元器件特性。后道工序是從由硅圓片分切好的一個一個的芯片入手,進行裝片、固定、鍵合聯(lián)接、塑料灌封、引出接線端子、按印檢查等工序,完成作為器件、部件的封裝體,以確保元器件的可靠性,并便于與外電路聯(lián)接。
二
半導體制造工藝和流程
晶圓制造:晶圓制造主要是在晶圓上制作電路與鑲嵌電子元件(如電晶體、電容、邏輯閘等),是所需技術最復雜且資金投入最多的過程。以微處理器為例,其所需處理步驟可達數(shù)百道,而且所需加工機器先進且昂貴。雖然詳細的處理程序是隨著產品種類和使用技術的變化而不斷變化,但其基本處理步驟通常是晶圓先經過適當?shù)那逑粗螅又M行氧化及沉積處理,最后進行微影、蝕刻及離子植入等反復步驟,最終完成晶圓上電路的加工與制作。晶圓測試:晶圓經過劃片工藝后,表面上會形成一道一道小格,每個小格就是一個晶片或晶粒(Die),即一個獨立的集成電路。在一般情況下,一個晶圓上制作的晶片具有相同的規(guī)格,但是也有可能在同一個晶圓上制作規(guī)格等級不同的晶片。晶圓測試要完成兩個工作:一是對每一個晶片進行驗收測試,通過針測儀器(Probe)檢測每個晶片是否合格,不合格的晶片會被標上記號,以便在切割晶圓的時候將不合格晶片篩選出來;二是對每個晶片進行電氣特性(如功率等)檢測和分組,并作相應的區(qū)分標記。芯片封裝:首先,將切割好的晶片用膠水貼裝到框架襯墊(Substrate)上;其次,利用超細的金屬導線或者導電性樹脂將晶片的接合焊盤連接到框架襯墊的引腳,使晶片與外部電路相連,構成特定規(guī)格的集成電路芯片(Bin);最后對獨立的芯片用塑料外殼加以封裝保護,以保護芯片元件免受外力損壞。塑封之后,還要進行一系列操作,如后固化(Post Mold Cure)、切筋(Trim)、成型(Form)和電鍍(Plating)等工藝。芯片測試:封裝好的芯片成功經過烤機(Burn In)后需要進行深度測試,測試包括初始測試(Initial Test)和最后測試(Final Test)。初始測試就是把封裝好的芯片放在各種環(huán)境下測試其電氣特性(如運行速度、功耗、頻率等),挑選出失效的芯片,把正常工作的芯片按照電氣特性分為不同的級別。最后測試是對初始測試后的芯片進行級別之間的轉換等操作。成品入庫:測試好的芯片經過半成品倉庫后進入最后的終加工,包括激光印字、出廠質檢、成品封裝等,最后入庫。
三
封裝的功能
封裝最基本的功能是保護電路芯片免受周圍環(huán)境的影響(包括物理、化學的影響)。所以,在最初的微電子封裝中,是用金屬罐(Metal Can)作為外殼,用與外界完全隔離的、氣密的方法,來保護脆弱的電子元件。但是,隨著集成電路技術的發(fā)展,尤其是芯片鈍化層技術的不斷改進,封裝的功能也在慢慢異化。一般來說顧客所需要的并不是芯片,而是由芯片和PKG構成的半導體器件。PKG是半導體器件的外緣,是芯片與實裝基板間的界面。因此無論PKG的形式如何,封裝最主要的功能應是芯片電氣特性的保持功能。通常認為,半導體封裝主要有電氣特性的保持、芯片保護、應力緩和及尺寸調整配合四大功能,它的作用是實現(xiàn)和保持從集成電路器件到系統(tǒng)之間的連接,包括電學連接和物理連接。目前,集成電路芯片的I/0線越來越多,它們的電源供應和信號傳送都是要通過封裝來實現(xiàn)與系統(tǒng)的連接。芯片的速度越來越快,功率也越來越大,使得芯片的散熱問題日趨嚴重,由于芯片鈍化層質量的提高,封裝用以保護電路功能的作用其重要性正在下降。芯片電氣特性的保持功能,通過PKG的進步,滿足不斷發(fā)展的高性能、小型化、高頻化等方面的要求,確保其功能性。芯片保護功能,PKG的芯片保護功能很直觀,保護芯片表面以及連接引線等,使在電氣或物理等方面相當柔嫩的芯片免受外力損害及外部環(huán)境的影響。保證可靠性。應力緩和功能,由于熱等外部環(huán)境的影響或者芯片自身發(fā)熱等都會產生應力,PKG緩解應力,防止發(fā)生損壞失效,保證可靠性。尺寸調整配合(間距變化)功能,由芯片的微細引線間距調整到實裝基板的尺寸間距,從而便于實裝操作。例如,從亞微米(目前已小于 0.13μm)為特征尺寸的芯片到以10μm為單位的芯片電極凸點,再到以100μm為單位的外部引線端子,最后到以mm為單位的實裝基板,都是通過PKG來實現(xiàn)的。在這里PKG起著由小到大、由難到易、由復雜到簡單的變換作用。從而可使操作費用及資材費用降低,而且提高工作效率和可靠性。保證實用性或通用性。
四
微電子封裝的三個層次
一級封裝:一級封裝是用封裝外殼將芯片封裝成單芯片組件(SCM)和多芯片組件(MCM)。半導體芯片和封裝體的電學互聯(lián),通常有三種實現(xiàn)途徑,引線鍵合(WB)、載帶自動焊(TAB)和倒裝焊(Flip Chip),一級封裝的可以使用金屬、陶瓷,塑料(聚合物)等包封材料。封裝工藝設計需要考慮到單芯片或者多芯片之間的布線,與PCB節(jié)距的匹配,封裝體的散熱情況等。二級封裝:二級封裝是印刷電路板的封裝和裝配,將一級封裝的元器件組裝到印刷電路板(PCB)上,包括板上封裝單元和器件的互連,包括阻抗的控制、連線的精細程度和低介電常數(shù)材料的應用。除了特別要求外,這一級封裝一般不單獨加封裝體,具體產品如計算機的顯卡,PCI數(shù)據(jù)采集卡等都屬于這一級封裝。如果這一級封裝能實現(xiàn)某些完整的功能,需要將其安裝在同一的殼體中,例如Ni公司的USB數(shù)據(jù)采集卡,創(chuàng)新的外置USB聲卡等。三級封裝:三級封裝是將二級封裝的組件查到同一塊母板上,也就是關于插件接口、主板及組件的互連。這一級封裝可以實現(xiàn)密度更高,功能更全組裝,通常是一種立體組裝技術。
例如一臺PC的主機,一個NI公司的PXI數(shù)據(jù)采集系統(tǒng),汽車的GPS導航儀,這些都屬于三級微電子封裝的產品。微電子封裝工程和電子基板、微電子封裝是一個復雜的系統(tǒng)工程,類型多、范圍廣,涉及各種各樣材料和工藝。可按幾何維數(shù)將電子封裝分解為簡單的“點、線、面、體、塊、板”等。電子基板是半導體芯片封裝的載體,搭載電子元器件的支撐,構成電子電路的基盤,按其結構可分為普通基板、印制電路板、模塊基板等幾大類。其中PCB在原有雙面板、多層板的基礎上,近年來又出現(xiàn)積層(build-up)多層板。模塊基板是指新興發(fā)展起來的可以搭載在PCB之上,以BGA、CSP、TAB、MCM為代表的封裝基板(Package Substrate,簡稱PKG基板)。小到芯片、電子元器件,大到電路系統(tǒng)、電子設備整機,都離不開電子基板。近年來在電子基板中,高密度多層基板所占比例越來越大。微電子封裝所涉及的各個方面幾乎都是在基板上進行或與基板相關。在電子封裝工程所涉及的四大基礎技術,即薄厚膜技術、微互連技術、基板技術、封接與封裝技術中,基板技術處于關鍵與核心地位。隨著新型高密度封裝形式的出現(xiàn),電子封裝的許多功能,如電氣連接,物理保護,應力緩和,散熱防潮,尺寸過渡,規(guī)格化、標準化等,正逐漸部分或全部的由封裝基板來承擔。微電子封裝的范圍涉及從半導體芯片到整機,在這些系統(tǒng)中,生產電子設備包括6個層次,也即裝配的6個階段。我們從電子封裝工程的角度,按習慣一般稱層次1為零級封裝;層次2為一級封裝;層次3為二級封裝;層次4、5、6為三級封裝。
五
電子封裝工程的六個階段
層次1(裸芯片):它是特指半導體集成電路元件(IC芯片)的封裝,芯片由半導體廠商生產,分為兩類,一類是系列標準芯片,另一類是針對系統(tǒng)用戶特殊要求的專用芯片,即未加封裝的裸芯片(電極的制作、引線的連接等均在硅片之上完成)。層次2(封裝后的芯片即集成塊):分為單芯片封裝和多芯片封裝兩大類。前者是對單個裸芯片進行封裝,后者是將多個裸芯片裝載在多層基板(陶瓷或有機)上進行氣密性封裝構成MCM。層次3(板或卡):它是指構成板或卡的裝配工序。將多個完成層次2的單芯片封裝和MCM,實裝在PCB板等多層基板上,基板周邊設有插接端子,用于與母板及其它板或卡的電氣連接。層次4(單元組件):將多個完成層次3的板或卡,通過其上的插接端子搭載在稱為母板的大型PCB板上,構成單元組件。層次5(框架件):它是將多個單元構成(框)架,單元與單元之間用布線或電纜相連接。層次6(總裝、整機或系統(tǒng)):它是將多個架并排,架與架之間由布線或電纜相連接,由此構成大型電子設備或電子系統(tǒng)。封裝基板和封裝分級:從硅圓片制作開始,微電子封裝可分為0、1、2、3四個等級,涉及上述六個層次,封裝基板(PKG基板或Substrate)技術現(xiàn)涉及1、2、3三個等級和2~5的四個層次。封裝基板主要研究前3個級別的半導體封裝(1、2、3級封裝),0級封裝暫與封裝基板無關,因此封裝基板一般是指用于1級2級封裝的基板材料,母板(或載板)、剛撓結合板等用于三級封裝。
膠水(膠粘劑)の紹介
一
膠粘劑的組成
現(xiàn)在使用的膠粘劑均是采用多種組分合成樹脂膠粘劑,單一組分的膠粘劑已不能滿足使用中的要求。合成膠粘劑由主劑和助劑組成,主劑又稱為主料、基料或粘料;助劑有固化劑、稀釋劑、增塑劑、填料、偶聯(lián)劑、引發(fā)劑、增稠劑、防老劑、阻聚劑、穩(wěn)定劑、絡合劑、乳化劑等,根據(jù)要求與用途還可以包括阻燃劑、發(fā)泡劑、消泡劑、著色劑和防霉劑等成分。
1.主劑主劑是膠粘劑的主要成分,主導膠粘劑粘接性能,同時也是區(qū)別膠粘劑類別的重要標志。主劑一般由一種或兩種,甚至三種高聚物構成,要求具有良好的粘附性和潤濕性等。通常用的粘料有:
·天然高分子化合物如蛋白質、皮膠、魚膠、松香、桃膠、骨膠等。2)合成高分子化合物①熱固性樹脂,如環(huán)氧樹脂、酚醛樹脂、聚氨酯樹脂、脲醛樹脂、有機硅樹脂等。②熱塑性樹脂,如聚醋酸乙烯酯、聚乙烯醇及縮醛類樹脂、聚苯乙烯等。③彈性材料,如丁腈膠、氯丁橡膠、聚硫橡膠等。④各種合成樹脂、合成橡膠的混合體或接枝、鑲嵌和共聚體等。
2.助劑為了滿足特定的物理化學特性,加入的各種輔助組分稱為助劑,例如:為了使主體粘料形成網型或體型結構,增加膠層內聚強度而加入固化劑(它們與主體粘料反應并產生交聯(lián)作用);為了加速固化、降低反應溫度而加入固化促進劑或催化劑;為了提高耐大氣老化、熱老化、電弧老化、臭氧老化等性能而加入防老劑;為了賦予膠粘劑某些特定性質、降低成本而加入填料;為降低膠層剛性、增加韌性而加入增韌劑;為了改善工藝性降低粘度、延長使用壽命加入稀釋劑等。包括:1)固化劑:固化劑又稱硬化劑,是促使黏結物質通過化學反應加快固化的組分,它是膠粘劑中最主要的配合材料。它的作用是直接或通過催化劑與主體聚合物進行反應,固化后把固化劑分子引進樹脂中,使原來是熱塑性的線型主體聚合物變成堅韌和堅硬的體形網狀結構。固化劑的種類很多,不同的樹脂、不同要求采用不同的固化劑。膠接的工藝性和其使用性能是由加人的固化劑的性能和數(shù)量來決定的。2)增韌劑:增韌劑的活性基團直接參與膠粘劑的固化反應,并進入到固化產物最終形成的一個大分子的鏈結構中。沒有加入增韌劑的膠粘劑固化后,其性能較脆,易開裂,實用性差。加入增韌劑的膠接劑,均有較好的抗沖擊強度和抗剝離性。不同的增韌劑還可不同程度地降低其內應力、固化收縮率,提高低溫性能。常用的增韌劑有聚酰胺樹脂、合成橡膠、縮醛樹脂、聚砜樹脂等。3)稀釋劑:稀釋劑又稱溶劑,主要作用是降低膠粘劑粘度,增加膠粘劑的浸潤能力,改善工藝性能。有的能降低膠粘劑的活性,從而延長使用期。但加入量過多,會降低膠粘劑的膠接強度、耐熱性、耐介質性能。常用的稀釋劑有丙酮、漆料等多種與粘料相容的溶劑。4)填料:填料一般在膠黏劑中不發(fā)生化學反應,使用填料可以提高膠接接頭的強度、抗沖擊韌性、耐磨性、耐老化性、硬度、最高使用溫度和耐熱性,降低線膨脹系數(shù)、固化收縮率和成本等。常用的填料有氧化銅、氧化鎂、銀粉、瓷粉、云母粉、石棉粉、滑石粉等。5)改性劑:改性劑是為了改善膠黏劑的某一方面性能,以滿足特殊要求而加入的一些組分,如為增加膠接強度,可加入偶聯(lián)劑,還可以加入防腐劑、防霉劑、阻燃劑和穩(wěn)定劑等。
二
膠粘劑的分類
(一)、按成分來分:
膠粘劑種類很多,比較普遍的有:脲醛樹脂膠粘劑、聚醋酸乙烯膠粘劑、聚丙烯酸樹脂膠粘劑,聚丙烯酸樹脂、聚氨酯膠粘劑、熱熔膠粘劑、環(huán)氧樹脂膠粘劑、合成膠粘劑等等。
1、有機硅膠粘劑:是一種密封膠粘劑,具有耐寒、耐熱、耐老化、防水、防潮、伸縮疲勞強度高、永久變形小、無毒等特點。近年來,此類膠粘劑在國內發(fā)展迅速,但目前我國有機硅膠粘劑的原料部分依靠進口。
2、聚氨酯膠粘劑:能粘接多種材料,粘接后在低溫或超低溫時仍能保持材料理化性質,主要應用于制鞋、包裝、汽車、磁性記錄材料等領域。
3、聚丙烯酸樹脂:主要用于生產壓敏膠粘劑,也用于紡織和建筑領域。
建筑用膠粘劑:主要用于建筑工程裝飾、密封或結構之間的粘接。
4、 熱熔膠粘劑:根據(jù)原料不同,可分為EVA熱熔膠、聚酰胺熱熔膠、聚酯熱熔膠、聚烯烴熱熔膠等。目前國內主要生產和使用的是EVA熱熔膠。聚烯烴系列膠粘劑主要原料是乙烯系列、SBS、SIS共聚體。
5、環(huán)氧樹脂膠粘劑:可對金屬與大多數(shù)非金屬材料之間進行粘接,廣泛用于建筑、汽車、電子、電器及日常家庭用品方面
6、脲醛樹脂、酚醛、三聚氰胺-甲醛膠粘劑:主要用于木材加工行業(yè),使用后的甲醛釋放量高于國際標準。木材加工用膠粘劑:用于中密度纖維板、石膏板、膠合板和刨花板等
7、合成膠粘劑:主要用于木材加工、建筑、裝飾、汽車、制鞋、包裝、紡織、電子、印刷裝訂等領域。目前,我國每年進口合成膠粘劑近20萬噸,品種包括熱熔膠粘劑、有機硅密封膠粘劑、聚丙烯酸膠粘劑、聚氨酯膠粘劑、汽車用聚氯乙烯可塑膠粘劑等。同時,每年出口合成膠粘劑約2萬噸,主要是聚醋酸乙烯、聚乙烯酸縮甲醛及壓敏膠粘劑。
(二)、按用途來分:
1、密封膠粘劑:主要用于門、窗及裝配式房屋預制件的連接處。高檔密封膠粘劑為有機硅及聚氨酯膠粘劑,中檔的為氯丁橡膠類膠粘劑、聚丙烯酸等。建筑用膠粘劑市場上,有機硅膠粘劑、聚氨酯密封膠粘劑應是今后發(fā)展的方向,目前其占據(jù)建筑密封膠粘劑的銷售量為30%左右。
2、建筑結構用膠粘劑:主要用于結構單元之間的聯(lián)接。如鋼筋混凝土結構外部修補,金屬補強固定以及建筑現(xiàn)場施工,一般考慮采用環(huán)氧樹脂系列膠粘劑。
3、汽車用膠粘劑:分為4種,即車體用、車內裝飾用、擋風玻璃用以及車體底盤用膠粘劑。
目前我國汽車用膠粘劑年消耗量約為4萬噸,其中使用量最大的是聚氯乙烯可塑膠粘劑、氯丁橡膠膠粘劑及瀝青系列膠粘劑。
4、包裝用膠粘劑:主要是用于制作壓敏膠帶與壓敏標簽,對紙、塑料、金屬等包裝材料表面進行粘合。紙的包裝材料用膠粘劑為聚醋酸乙烯乳液。塑料與金屬包裝材料用膠粘劑為聚丙烯酸乳液、VAE乳液、聚氨酯膠粘劑及氰基丙烯酸酯膠粘劑。
5、電子用膠粘劑:消耗量較少,目前每年不到1萬噸,大部分用于集成電路及電子產品,現(xiàn)主要用環(huán)氧樹脂、不飽和聚酯樹脂、有機硅膠粘劑。用于5微米厚電子元件的封端膠粘劑我們可以自己供給,但3微米厚電子元件用膠粘劑需從國外進口。
6、制鞋用膠粘劑:年消費量約為12.5萬噸,其中氯丁橡膠類膠粘劑需要11萬噸,聚氨酯膠粘劑約1.5萬噸。由于氯丁橡膠類膠粘劑需用苯類作溶劑,而苯類對人體有害,應限制發(fā)展,為滿足制鞋業(yè)發(fā)展需求,采用聚氨酯系列膠粘劑將是方向。
(三)、按物理形態(tài)來分:
1、密封膠 :1.1 按密封膠硫化方法分類
(1)濕空氣硫化型密封膠 :此類密封膠系列用空氣中的水分進行硫化。主要包括單組分的聚氨酯、硅橡膠和聚硫橡膠等。其聚合物基料中含有活性基團,能同空氣中的水發(fā)生反應,形成交聯(lián)鍵,使密封膠硫化成網狀結構。(2)化學硫化型密封膠 :雙組分的聚氨酯、硅橡膠、聚硫橡膠、氯丁橡膠和環(huán)氧樹脂密封膠都屬于這一類,一般在室溫條件下完成硫化。某些單組分的氯磺化聚乙烯和氯丁橡膠密封膠以及聚氯乙烯溶膠糊狀密封膠則須在加熱條件下經化學反應完成硫化。(3)熱轉變型密封膠 :用增塑劑分散的聚氯乙烯樹脂和含有瀝青的橡膠并用的密封膠是兩個不同類型的熱轉變體系。乙烯基樹脂增塑體在室溫下是液態(tài)懸浮體,通過加熱轉化為固體而硬化;而橡膠-瀝青并用密封膠則為熱熔性的。(4)氧化硬化型密封膠 :表面干燥的嵌逢或安裝玻璃用密封膠主要以干性或半干性植物油或動物油為基料,這類油料可以是精制聚合的、吹制的或化學改性的。(5)溶劑揮發(fā)凝固型密封膠 :這是以溶劑揮發(fā)后無粘性高聚物為基料的密封膠。這一類密封膠主要有丁基橡膠、高分子量聚異丁烯、一定聚合程度的丙烯酸酯、氯磺化聚乙烯以及氯丁橡膠等密封膠。
1.2 按密封膠形態(tài)分類
(1)膏狀密封膠 :此類密封膠基本上用于靜態(tài)接縫中,使用期一般為2年或2年以上。通常采用3種主體材料:油和樹脂、聚丁烯、瀝青。(2)液態(tài)彈性體密封膠 : 此類密封膠包括經硫化可形成真正彈性狀態(tài)的液體聚合物,它們具有承受重復的接縫變形能力。彈性體密封膠所使用的聚合物彈性體包括液體聚硫橡膠、巰端基聚丙烯醚、液體聚氨酯、室溫硫化硅橡膠和低分子丁基橡膠等。該類密封膠通常配合成兩個組分,使用時將兩個組分混合。(3)熱熔密封膠:熱熔密封膠又叫熱施工型密封膠。指以彈性體同熱塑性樹脂摻合物為基料的密封膠。這類密封膠通常在加熱(150~200℃)情況下經一定口型模型直接擠出到接縫中。熱施工可改進密封膠對被粘基料的濕潤能力,因此對大多數(shù)被粘基料具有良好的粘接力。一經放入適當位置,就冷卻成型或成膜,成為收縮性很小的堅固的彈性體。熱施工密封膠的主體材料主要是異丁烯類聚合物、三元乙丙橡膠和熱塑性的苯乙烯嵌段共聚物。它們通常同熱塑性樹脂如EVA、EEA、聚乙烯、聚酰胺、聚酯等摻合。(4)液體密封膠 :該類密封膠主要用于機械接合面的密封,用以代替固體密封材料即固體墊圈以防止機械內部流體從接合面泄漏。該類密封膠通常以高分子材料例如橡膠、樹脂等為主體材料,再配以填料及其它組分制成。液體密封膠通常分不干性粘著型、半干性粘彈性、干性附著型和干性可剝型等4類。根據(jù)具體使用部位及要求選擇。
1.3 按密封膠施工后性能分類
(1)固化型密封膠 :固化型密封膠可分成剛性密封膠和柔性密封膠兩種類型:a)剛性密封膠硫化或凝固后形成堅硬的固體,很少具有彈性;此類密封膠有的品種既起密封作用又起膠接作用,其代表性密封膠是以環(huán)氧樹脂、聚酯樹脂、聚丙烯酸酯、聚酰胺和聚乙酸乙烯酯等樹脂為基料的密封膠。b)柔性密封膠在硫化后保持柔軟性。它們一般以橡膠彈性體為基料。柔性變化幅度大,硬度(邵爾A)在10~80范圍內。這類密封膠品種是純橡膠,大多數(shù)具有良好膠粘劑的性能。
(2)非固化型密封膠 :這類密封膠是軟質凝固性的密封膠,施工之后仍保持不干性狀態(tài)。通常為膏狀,可用刮刀或刷子用到接縫中,可以配合出許多不同粘度和不同性能的密封膠。
2、按膠粘劑硬化方法分類 :低溫硬化代號為a;常溫硬化代號為b;加溫硬化代號為c;適合多種溫度區(qū)域硬化代號為d;與水反應固化代號為e;厭氧固化代號為f;輻射(光、電子束、放射線)固化代號為g;熱熔冷硬化代號為h;壓敏粘接代號為i;混凝或凝聚代號為j,其他代號為k。
3、按膠粘劑被粘物分類 :多類材料代號為A;木材代號為B;紙代號為C;天然纖維代號為D;合成纖維代號為E;聚烯烴纖維(不含E類)代號為F;金屬及合金代號為G;難粘金屬(金、銀、銅等)代號為H;金屬纖維代號為I,無機纖維代號為J;透明無機材料(玻璃、寶石等)代號為K;不透明無機材料代號為L;天然橡膠代號為M;合成橡膠代號為N;難粘橡膠(硅橡膠、氟橡膠、丁基橡膠)代號為O,硬質塑料代號為P,塑料薄膜代號為Q;皮革、合成革代號為R,泡沫塑料代號為S; 難粘塑料及薄膜(氟塑料、聚乙烯、聚丙烯等)代號為T;生物體組織骨骼及齒質材料代號為U;其他代號為V。
4、膠水狀態(tài):無溶劑液體代號為1;2有機溶劑液體代號為2;3水基液體代號為3,4膏狀、糊狀代號為4,5粉狀、粒狀、塊狀代號為5;6片狀、膜狀、網狀、帶狀代號為6;7絲狀、條狀、棒狀代號為7。
5、其它膠粘劑: (不常用到):金屬結構膠、聚合物結構膠、光敏密封結構膠、其它復合型結構膠
熱固性高分子膠:環(huán)氧樹脂膠、聚氨酯(PU)膠、氨基樹脂膠、酚醛樹脂膠、丙烯酸樹脂膠、呋喃樹脂膠、間笨二酚-甲醛樹脂膠、二甲笨-甲醛樹脂膠、不飽和聚酯膠、復合型樹脂膠、聚酰亞胺膠、脲醛樹脂膠、其它高分子膠
密封膠粘劑:室溫硫化硅橡膠、環(huán)氧樹脂密封膠、聚氨酯密封膠、不飽和聚酯類、丙烯酸酯類、密封膩子、氯丁橡膠類密封膠、彈性體密封膠、液體密封墊料、聚硫橡膠密封膠、其它密封膠
熱熔膠:熱熔膠條、膠粒、膠粉、EVA熱熔膠、橡膠熱熔膠、聚丙烯、聚酯、聚酰胺、聚胺酯熱熔膠、苯乙烯類熱熔膠、新型熱熔膠、聚乙烯及乙烯共聚物熱熔膠、其他熱熔膠
水基膠粘劑:丙烯酸乳液、醋酸乙烯基乳液、聚乙烯醇縮醛膠、乳液膠、其它水基膠
壓敏膠(不干膠):膠水、膠粘帶、無溶劑壓敏膠、溶劑壓敏膠、固化壓敏膠、橡膠壓敏膠、丙烯酸酯壓敏膠、其它壓敏膠
溶劑型膠:樹脂溶液膠、橡膠溶液膠、其它溶劑膠
無機膠粘劑:熱熔無機膠、自然干無機膠、化學反應無機膠、水硬無機膠、其它無機膠
熱塑性高分子膠粘劑:固體高分子膠、溶液高分子膠、乳液高分子膠、單體高分子膠、其它熱塑性高分子膠
天然膠粘劑:蛋白質膠、碳水化合物膠粘劑、其他天然膠
橡膠粘合劑:硅橡膠粘合劑、氯丁橡膠粘合劑、丁腈橡膠粘合劑、改性天然橡膠粘合劑、氯磺化聚乙烯粘合劑、聚硫橡膠粘合劑羧基橡膠粘合劑、聚異丁烯、丁基橡膠粘合劑、其它橡膠粘合劑
耐高溫膠:有機硅膠、無機膠、高溫模具樹脂膠、金屬高溫粘合劑、其它耐高溫膠
聚合物膠粘劑:丁腈聚合物膠、聚硫橡膠粘合劑、聚氯乙烯膠粘劑、聚丁二烯膠、過氯乙烯膠粘劑、其它聚合物膠
修補劑:金屬修補劑、高溫修補劑、緊急修補劑、耐磨修補劑、耐腐蝕修補劑、塑膠修補劑、其它修補劑
醫(yī)用膠、紙品用膠、導磁膠、防磁膠、防火膠、防淬火膠、防淬裂膠、動物膠、植物膠、礦物膠、食品級膠粘劑、其它膠水。
膠水(膠粘劑)粘接の簡介
常用膠粘劑的固化形式
為了便于膠粘劑對被粘物面的浸潤,膠粘劑在粘接之前要制成液態(tài)或使之變成液態(tài),粘接后,只有變成固態(tài)才具有強度。通過適當方法使膠層由液態(tài)變成固態(tài)的過程稱為膠粘劑的固化。而不同的膠粘劑的固化形式則是不同的,常用膠粘劑的固化形式有以下幾種:
1、 溶液型膠粘劑的固化:溶液型膠強劑固化過程的實質是隨著溶劑的揮發(fā)。溶液濃度不斷增大,最后達到一定的強度。溶液膠的固化速度決定于溶劑的揮發(fā)速度,還受環(huán)境溫度、濕度、被粘物的致密程度與含水量、接觸面大小等因素的影響。配制溶液膠時應選樣特定溶劑改組成混合溶劑以調節(jié)固化速度。選用易持發(fā)的溶劑,易影響結晶料的結晶速度與程度,甚至造成膠層結皮而降低粘接強度,此外快速揮發(fā)造成的粘接處降溫凝水對粘接強度也是不利的。選用的溶劑揮發(fā)太慢,固化時間長,效率低,還可能造成膠層中溶劑滯留,對粘接不利。
2、 乳液型膠粘劑的固化:水乳液型膠粘劑是聚合物膠體在水中的分散體,為一種相對穩(wěn)定體系。當乳液中的水分逐漸滲透到被粘物中并揮發(fā)時,其濃度就會逐漸增大,從而因表面張力的作用使膠粒凝聚而固化。環(huán)境溫度對乳液的凝聚影響很大,溫度足夠高時乳液能凝聚成連續(xù)的膜,溫度太低或低于最低成膜溫度(該溫度通常比玻璃化溫度略低一點)時不能形成連續(xù)的膜,此時膠膜呈白色,強度根差。不同聚合物乳液的最低成膜溫度是不同的,因此在使用該類膠粘劑時一定要使環(huán)境溫度高于其最低成膜溫度,否則粘接效果不好。
3 、熱熔膠的固化:熱熔膠的固化是一種簡單的熱傳遞過程,即加熱熔化涂膠粘合,冷卻即可固化。固化過程受環(huán)境溫度影響很大,環(huán)境溫度低,固化快。為了使熱熔膠液能允分濕潤被粘物,使用時必須嚴格控制熔融溫度和晾置時間,對于粘料具結晶性的熱熔膠尤應重視,否則將因冷卻過頭使粘料結晶不完全而降低粘接強度。
4 、增塑糊型膠粘劑的固化:增塑糊是高分子化合物在增塑劑中的一種不穩(wěn)定分散體系,其固化基本上是高分子化合物溶解在增塑劑中的過程。這種糊在常溫下行一定的穩(wěn)定性。在加熱時(一般在150~209℃)高分子化合物的增塑劑能迅速互溶而完全凝膠化,提高溫度有利于高分子鏈運動,有利于形成均勻致密的粘接層。但溫度過高會引起聚合物分解。
5、反應型膠粘劑的固化:反應型膠粘劑都存在著活性基團,與同化劑、引發(fā)劑和其他物理條件的作用下,粘料發(fā)生聚合交聯(lián)等化學反應而固化。按固化介式反應型膠粘劑可分為固化劑固化型、催化劑固化型與引發(fā)劑固化型等幾種類型。至于光敏固化、輻射同化等膠的固化機制一般屬于以上類型中。
二步固化膠水雙固化膠水雙重固化方式の定義
一
二步固化
分兩步固化:預固化,本固化。
二
雙固化
有兩種固化方式,比如:可以加熱或UV或常溫等。
三
雙重固化
需要兩種固化方式才能完全固化,比如:先UV后常溫,或先UV后加熱。
半導體芯片類封裝膠水の粘接原理
一
粘接理論
粘接是不同材料界面間接觸后相互作用的結果。因此,界面層的作用是膠粘科學中研究的基本問題。諸如被粘物與粘料的界面張力、表面自由能、官能基團性質、界面間反應等都影響膠接。膠接是綜合性強,影響因素復雜的一類技術,而現(xiàn)有的膠接理論都是從某一方面出發(fā)來闡述其原理,所以至今全面唯一的理論是沒有的。
1.1 吸附理論:粘接力的主要來源是粘接體系的分子作用力,即范德化引力和氫鍵力。膠粘與被粘物表面的粘接力與吸附力具有某種相同的性質。膠黏劑分子與被粘物表面分子的作用過程有兩個過程:第一階段是液體膠黏劑分子借助于布朗運動向被粘物表面擴散,使兩界面的極性基團或鏈節(jié)相互靠近,在此過程中,升溫、施加接觸壓力和降低膠黏劑粘度等都有利于布朗運動的加強。第二階段是吸附力的產生。當膠黏劑與被粘物分子間的距離達到10-5? 時,界面分子之間便產生相互吸引力,使分子間的距離進一步縮短到處于最大穩(wěn)定狀態(tài)。膠黏劑的極性太高, 有時候會嚴重妨礙濕潤過程的進行而降低粘接力。
1.2 化學鍵形成理論:化學鍵理論認為膠黏劑與被粘物分子之間除相互作用力外,有時還有化學鍵產生,學鍵的強度比范德化作用力高得多;化學鍵形成不僅可以提高粘附強度,還可以克服脫附使膠接接頭破壞的弊病。但化學鍵的形成并不普通,要形成化學鍵必須滿足一定的量子化條件,所以不可能做到使膠黏劑與被粘物之間的接觸點都形成化學鍵。況且,單位粘附界面上化學鍵數(shù)要比分子間作用的數(shù)目少得多,因此粘附強度來自分子間的作用力是不可忽視的。
1.3 擴散理論:兩種聚合物在具有相容性的前提下,當它們相互緊密接觸時,由于分子的本身或其連段通過熱運動引起的擴散作用。這種擴散作用是穿越膠黏劑、被粘物的界面交織進行的。擴散的結果導致界面的消失和過渡區(qū)的產生。粘接體系借助擴散理論不能解釋聚合物材料與金屬、玻璃或其他硬體膠粘,因為聚合物很難向這類材料擴散。在粘接體系中,適當降低膠黏劑的分子量有助于提高擴散系數(shù),改善粘接性能。不同的分子結構形態(tài)聚合物分子鏈排列堆集的緊密程度不同,其擴散行為有顯著不同。由于聚合物的擴散作用還受到兩聚合物接觸時間、粘接溫度等作用因素的影響。兩聚合物相互粘接時,粘接溫度越高,時間越長,其擴散作用也越強,由擴散作用導致的粘接力就越高。
1.4 靜電理論:當膠黏劑和被粘物體系是一種電子的接受體 -供給體的組合形式時,電子會從供給體(如金屬)轉移到接受體(如聚合物),在界面區(qū)兩側形成了雙電層從而產生了靜電引力。在干燥環(huán)境中從金屬表面快速剝離粘接膠層時,可用儀器或肉眼觀察到放電的光、聲現(xiàn)象,證實了靜電作用的存在。但靜電作用僅存在于能夠形成雙電層的粘接體系,因此不具有普遍性。此外,有些學者指出:雙電層中的電荷密度必須達到1021電子/厘米2時,靜電吸引力才能對膠接強度產生較明顯的影響。而雙電層棲移電荷產生密度的最大值只有 1019電子/厘米2(有的認為只有1010-1011 電子/厘米2)。因此,靜電力雖然確實存在于某些特殊的粘接體系,但決不是起主導作用的因素。
1.5機械作用力理論:從物理化學觀點看,機械作用并不是產生粘接力的因素,而是增加粘接效果的一種方法。膠黏劑滲透到被粘物表面的縫隙或凹凸之處,固化后在界面區(qū)產生了嚙合力,這些情況類似釘子與木材的接合或樹根植入泥土的作用。機械連接力的本質是摩擦力。在粘合多孔材料、紙張、織物等時,機構連接力是很重要的,但對某些堅實而光滑的表面,這種作用并不顯著。
二
影響粘接強度の因素
除了濕潤,吸附過程、靜電作用及擴散作用的過程外,還有很多因素對粘接強度產生影響。
2.1 表面粗糙度及表面處理:被粘物表面的粗糙程度是產生機械粘接力的源泉。機械粘接力是通過加強濕潤及吸附作用而得到的。被粘物表面增加粗糙度等于增加其表面積。液體在粗糙表面的接觸角有別于在光滑表面的接觸角。試驗證明,有粘接體系呈良好濕潤狀態(tài)的前提下,糙化增大了實際面積,有利于粘接強度的提高。如果被粘物呈“毛羽”狀態(tài),可顯著提高粘接強度。當粘接劑良好的浸潤被粘材料表面,其接觸角表面的粗糙化有利于提高膠粘劑液體對表面的浸潤程度,增加了膠粘劑與被粘材料的接觸點密度,從而有利于提高粘接強度;當膠粘劑對被粘材料浸潤不良即時,表面粗糙化就不利于粘接強度的提高。粘接前的表面處理是粘接成功的關鍵,其目的是能獲得牢固耐久的接頭。
2.2 界面層的強弱:弱界面層的產生是由于被粘物,膠黏劑,環(huán)境或它們共同作用的結果,當被粘物,膠粘劑及環(huán)境中的低分子物或雜質通過滲析、吸附及聚集過程,在部分或全部界面內產生了這些低分子物的富集區(qū),這就是弱界面層。粘接接頭在外力作用下的破壞過程必然發(fā)生于弱界面層。這就是出現(xiàn)粘接界面破壞并且粘接力嚴重下降的原因。
2.3 內應力:粘接體系存在的內應力一般有兩個來源,一是膠層在固化過程中因體積收縮面產生的收縮應力。二是由于膠層與被粘物的膨脹系數(shù)不同,在受熱或冷卻時產生的熱應力。1)收縮應力當膠黏劑固化時,因揮發(fā),冷卻和化學反應而體積發(fā)生收縮,引起收縮應力。當收縮力超過黏附力時,表觀粘接強度就要顯著下降。此外,粘接端部或膠黏劑的空隙周圍應力分布不均勻也產生應力集中,增加了裂口出現(xiàn)的可能。有結晶性的膠黏劑在固化時,因潔晶而使體積收縮較大也造成接頭的內應力,如在其中加入一定量能結晶或改變結晶大小的橡膠態(tài)物質。那么就可以減小內應力。2)熱應力:在高溫下,熔融的樹脂冷卻固化會產生體積收縮,在界面上由于粘接的約束而產生內應力。在分子鏈間有滑移的可能性時,則產生的內應力消失。影響熱應力的主要因素有熱膨脹系數(shù)、室溫和時間的溫差以及彈性差量。為了緩和因膨脹系數(shù)差而引起的熱應力,應使膠黏劑的熱膨脹系數(shù)接近于被粘物的熱膨脹系數(shù),可添加該種材料的粉末,或其他材料的纖維或粉末進行調整;可以通過加入各種橡膠及增塑劑,還可以改變固化工藝,如采用逐步升溫、隨爐冷卻等方法。
2.4 環(huán)境的作用:被粘物表面主要是受周圍介質的污染。例如被粘物表面有油跡時,由于油層的表面張力低于膠黏劑的表面張力,故油層比膠黏劑更容易濕潤被粘物的表面,并生成一個不易清除的弱界面層,它的存在大大降低了膠黏劑對被粘物表面的親和力。周圍環(huán)境中,水分的作用更具普遍性。金屬、玻璃、陶瓷等高表面能材料的表面對水的吸附力很強,某些被粘物對水產生化學吸附要加熱到1000℃以上才能去除去。極性表面對水的吸附力比一般膠黏劑強,吸附水分不能被膠黏劑解吸。水分或其他低分子物對膠黏劑本身還有滲透、腐蝕和膨脹作用,這些作用均會減低膠黏劑的粘結力。
2.5 滲透及遷移:受環(huán)境氣氛的作用,已粘接的接頭常常被滲進一些其他低分子。例如,接頭在潮濕環(huán)境或水下,水分子滲透入膠層;聚合物膠層在有機溶劑中,溶劑分子滲透入聚合物中。低分子的透入首先使膠層變形,然后進入膠層于被粘物界面使膠層強度降低,從而導致粘接的破壞。滲透不僅從膠層邊沿開始,對于多孔性被粘物,低分子物可以從被粘物的空隙、毛細管或裂縫中滲透到被粘物中,進而浸入到界面上,使接頭出現(xiàn)缺陷乃至破壞。滲透不僅會導致接頭的物理性能下降,而且由于低分子物的滲透使界面發(fā)生化學變化,生成不利于粘接的銹蝕區(qū),使粘接完全失效。2.6 壓力及膠層厚度:在粘接時,向粘接面施加壓力,使粘接劑更容易充滿被粘體表面的坑洞,甚至流入深孔和毛細管中,減少粘接缺陷。對于黏度較小的膠黏劑,加壓時會過度地流淌,造成缺膠。因此應待黏度較大時再施加壓力,也促使被粘體表面上的氣體逸出,減少粘接區(qū)的氣孔。對于較稠的或固體的膠黏劑,在粘接時施加壓力是必不可少的手段。在這種情況下,常常需要適當?shù)厣邷囟龋越档湍z黏劑的稠度或使膠黏劑液化。
粘接是不同材料界面間接觸后相互作用的結果。因此,界面層的作用是膠粘科學中研究的基本問題。諸如被粘物與粘料的界面張力、表面自由能、官能基團性質、界面間反應等都影響膠接。膠接是綜合性強,影響因素復雜的一類技術,而現(xiàn)有的膠接理論都是從某一方面出發(fā)來闡述其原理,所以至今全面唯一的理論是沒有的。
半導體芯片類封裝膠水の常見檢測項目
一
粘度/留變度/觸變
通常是0.5RPM/5.0RPM/10RRPM/20RPM,測試設備為普通粘度儀和流變儀,后者測試更準確是趨勢。
二
粒徑檢測
通常有Hegman和ADM兩種測試方法。
三
外觀測試
目鏡觀察,膠水是否均勻,有無大顆粒異物等不良現(xiàn)象。
四
粘接力
測試條件:
1. 不同尺寸芯片(1*1 2*2 3*3mm等)
2. 不同粘接面(Ag/Au/Cu/PPF/PC等)
3. 不同測試條件(25C/260C/PB)
五
剝離力
剝離力(Lap shear):主要是結構粘接。
六
體積電阻
七
剝離力離子含量測試(Na/K/Br等)
八
硬度/密度/PH值等
1)所謂硬度,就是材料抵抗更硬物壓入其表面的能力。根據(jù)試驗方法和適應范圍的不同,硬度單位可分為布氏硬度、維氏硬度、洛氏硬度、顯微維氏硬度等許多種,不同的單位有不同的測試方法,適用于不同特性的材料或場合。硬度測試是檢測材料性能的重要指標之一,也是最快速最經濟的試驗方法之一。之所以能成為力學性能試驗的常用方法, 是因為硬度測試能反映出材料在化學成分、組織結構和處理工藝上的差異,常被作為監(jiān)督手段應用于各行各業(yè)。
2)密度測試儀是測定影像密度的儀器,也是測定感光特性的儀器之一。
中文名稱:密度計英文名稱:densitometer
定義1:測定影像密度的儀器,也是測定感光特性的儀器之一。
應用學科:測繪學(一級學科);攝影測量與遙感學(二級學科)
定義2:測量物質密度的儀器。由于密度和比重之間有一定關系,因此密度計也可以作為比重計。密度計按其用途分為液體密度計、氣體密度計、固體密度計等。
應用學科:機械工程(一級學科);分析儀器(二級學科);物性分析儀器-物性分析儀器儀器和附件(三級學科)。
3)pH值指酸堿度,以水的pH值7為中性,當pH<7的時候呈酸性,當pH>7時候呈堿性。pH測定儀由傳感器和二次表兩部分組成。可配三復合或兩復合電極,以滿足各種使用場所。配上純水和超純水電極,可適用于電導率小于3μs/cm的水質(如化學補給水、飽和蒸氣、凝結水等)的pH值測量。
-
檢測
+關注
關注
5文章
4496瀏覽量
91540
發(fā)布評論請先 登錄
相關推薦
評論