色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

SiC MOSFET真的有必要使用溝槽柵嗎?

英飛凌工業半導體 ? 2023-01-12 14:34 ? 次閱讀

眾所周知,“挖坑”是英飛凌的祖傳手藝。在硅基產品時代,英飛凌的溝槽型IGBT(例如TRENCHSTOP系列)和溝槽型的MOSFET就獨步天下。在碳化硅的時代,市面上大部分的SiC MOSFET都是平面型元胞,而英飛凌依然延續了溝槽路線。難道英飛凌除了“挖坑”,就不會干別的了嗎?非也。因為SiC材料獨有的特性,SiC MOSFET選擇溝槽結構,和IGBT是完全不同的思路。咱們一起來捋一捋。

MOSFET全稱金屬-氧化物半導體場效應晶體管(Metal-Oxide-Semiconductor Field-Effect Transistor)。MOSFET的簡化結構如下圖所示:硅片表面生長一層薄薄的氧化層,其上覆蓋多晶硅形成門極,門極兩側分別是N型注入的源極和漏極。當門極上施加的電壓高于閾值電壓時,門極氧化層下面就形成了強反型層溝道。這時再給漏源極之間施加一個正壓,電子就可以從源極經過反型層溝道,源源不斷地流到漏極。電流就這樣形成了。

e717efda-917e-11ed-ad0d-dac502259ad0.png

功率MOSFET為了維持較高的擊穿電壓,將漏極放在芯片背面,整個漂移層承受電壓。功率MOSFET的導通電阻,由幾部分構成:源極金屬接觸電阻、溝道電阻、JFET電阻、漂移區電阻、漏極金屬接觸電阻。設計人員總是要千方百計地降低導通電阻,進而降低器件損耗。對于高壓硅基功率器件來說,為了維持比較高的擊穿電壓,一般需要使用較低摻雜率以及比較寬的漂移區,因此漂移區電阻在總電阻中占比較大。碳化硅材料臨界電場強度約是硅的10倍,因此碳化硅器件的漂移區厚度可以大大降低。對于1200V及以下的碳化硅器件來說,溝道電阻的成為總電阻中占比最大的部分。因此,減少溝道電阻是優化總電阻的關鍵所在。

e7271f28-917e-11ed-ad0d-dac502259ad0.png

再來看溝道電阻的公式。

e731d33c-917e-11ed-ad0d-dac502259ad0.png

式中:

Lchannel:溝道長度,

Wchannel:溝道寬度,

COX:柵氧電容

μn,channel:溝道電子遷移率

從上式可以看出,溝道電阻和溝道電子遷移率(μn,channel)成反比。溝道形成于SiO2界面處,因此SiO2界面質量對于溝道電子遷移率有直接的影響。通俗一點說,電子在溝道中流動,好比汽車在高速公路上行駛。路面越平整,車速就越快。如果路面全是坑,汽車就不得不減速。而不幸的是,碳化硅材料形成的SiC-SiO2界面,缺陷密度要比Si-SiO2高得多。這些缺陷在電子流過會捕獲電子,電子遷移率下降,從而溝道電阻率上升。

e7399496-917e-11ed-ad0d-dac502259ad0.png

平面型器件怎么解決這個問題呢?再看一下溝道電阻的公式,可以看到有幾個簡單粗暴的辦法:提高柵極電壓Vgs,或者降低柵極氧化層厚度,或者降低閾值電壓Vth。前兩個辦法,都會提高柵極氧化層中的電場強度,但太高的電場強度不利于器件的長期可靠性(柵氧化層的擊穿電壓一般是10MV/cm,但4MV/cm以上的場強就會提高器件長期潛在失效率)。如果器件的閾值電壓Vth太低,在實際開關過程中,容易發生寄生導通。更嚴重的是,閾值電壓Vth會隨著溫度的升高而降低,高溫下的寄生導通問題會更明顯。

e75089bc-917e-11ed-ad0d-dac502259ad0.png

平面型SiC MOSFET柵氧薄弱點

好像進入到一個進退兩難的境地了?別忘了,碳化硅是各向異性的晶體,不同的晶面,其態密度也是不同的。英飛凌就找到了一個晶面,這個晶面與垂直方向有4°的夾角,在這個晶面上生長SiO2, 得到的缺陷密度是最低的。這個晶面接近垂直于表面,于是,英飛凌祖傳的”挖坑”手藝,就派上用場了。CoolSiC MOSFET也就誕生了。需要強調一下,不是所有的溝槽型MOSFET都是CoolSiC! CoolSiC是英飛凌碳化硅產品的商標。CoolSiC MOSFET具有下圖所示非對稱結構。

e7595344-917e-11ed-ad0d-dac502259ad0.png

?+

+

CoolSiC MOSFET使用溝槽有什么好處?

首先,垂直晶面缺陷密度低,溝道電子遷移率高。所以,我們可以使用相對比較厚的柵極氧化層,同樣實現很低的導通電阻。因為氧化層的厚度比較厚,不論開通還是關斷狀態下,它承受的場強都比較低,所以器件可靠性和壽命都更高。下圖比較了英飛凌CoolSiC MOSFET與硅器件,以及其它品牌SiC MOSFET的柵氧化層厚度對比??梢钥吹剑?span style="color:rgb(62,62,62);">CoolSiC MOSFET 柵氧化層厚度為70nm,與Si器件相當。而其它平面型SiC MOSFET柵氧化層厚度最大僅為50nm。如果施加同樣的柵極電壓,平面型的SiC MOSFET柵氧化層上的場強就要比溝槽型的器件增加30%左右。

e7646108-917e-11ed-ad0d-dac502259ad0.png

而且,CoolSiC MOSFET閾值電壓約為4.5V,在市面上屬于比較高的值。這樣做的好處是在橋式應用中,不容易發生寄生導通。下圖比較了英飛凌CoolSiCMOSFET與其它競爭對手的閾值電壓,以及在最惡劣工況下,由米勒電容引起的柵極電壓過沖。如果米勒電壓過沖高于閾值電壓,意味著可能發生寄生導通。英飛凌CoolSiC器件的米勒電壓低于閾值電壓,實際應用中一般不需要米勒鉗位,節省驅動電路設計時間與成本。

e76d37ec-917e-11ed-ad0d-dac502259ad0.png

要說給人挖坑容易,給SiC“挖坑”,可就沒那么簡單了。碳化硅莫氏硬度9.5,僅次于金剛石。在這么堅硬的材料上不光要挖坑,還要挖得光滑圓潤。這是因為,溝槽的倒角處,是電場最容易集中的地方,CoolSiC不光完美處理了倒角,還上了雙保險,在溝槽一側設置了深P阱。在器件承受反壓時,深P阱可以包裹住溝槽的倒角,從而減輕電場集中的現象。

深P阱的另一個功能,是作為體二極管的陽極。通常的MOSFET體二極管陽極都是由P基區充當,深P阱的注入濃度和深度都高于P基區,可以使體二極管導通壓降更低,抗浪涌能力更強。

好的,CoolSiC MOSFET就先介紹到這里了。CoolSiC MOSFET不是單純的溝槽型MOSFET,它在獨特的晶面上形成溝道,并且有非對稱的深P阱結構,這使得CoolSiCMOSFET具有較低的導通電阻,與Si器件類似的可靠性,以及良好的體二極管特性。

e778e3bc-917e-11ed-ad0d-dac502259ad0.gif

?+

+

再來概括一下全文內容:

為什么需要溝槽型SiC MOSFET?

我需要SiC MOSFET具有比較低的導通電阻Rdson我不能單純地提高柵極電壓,降低閾值電壓或者降低柵氧化層的厚度,這樣可能使器件壽命下降我找到一個垂直的晶面,它具有最低的缺陷率,從而允許更高的溝道電子遷移率開始“挖坑”

溝槽型CoolSiC MOSFET有什么好處?

導通電阻低,芯片面積小

閾值電壓高,米勒電容小,不易發生寄生導通。

非對稱的深P阱結構緩解溝槽拐角處電場,另外形成增強型的體二極管結構,優化了二極管特性。

與Si IGBT相當的柵極氧化層厚度,壽命及可靠性與Si器件相當

能過總結我們可以看出,SiC MOSFET使用溝槽柵能大大提升器件參數、可靠性及壽命。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • MOSFET
    +關注

    關注

    147

    文章

    7156

    瀏覽量

    213145
  • SiC
    SiC
    +關注

    關注

    29

    文章

    2804

    瀏覽量

    62607
收藏 人收藏

    評論

    相關推薦

    本文介紹了一種基于英飛凌碳化硅溝槽(CoolSiC?)的系統解決方案

    本文介紹了一種基于英飛凌碳化硅溝槽(CoolSiC?)的系統解決方案用于無橋圖騰柱的超結(CoolMOS?)功率半導體、驅動器和微控制器功率因數校正(PFC)轉換器工作在連續導通模式(CCM
    發表于 11-11 16:10 ?0次下載

    SiC MOSFETSiC SBD的區別

    SiC MOSFET(碳化硅金屬氧化物半導體場效應晶體管)和SiC SBD(碳化硅肖特基勢壘二極管)是兩種基于碳化硅(SiC)材料的功率半導體器件,它們在電力電子領域具有廣泛的應用。盡
    的頭像 發表于 09-10 15:19 ?1525次閱讀

    Littelfuse宣布推出IX4352NE低側SiC MOSFET和IGBT柵極驅動器

    Littelfuse宣布推出IX4352NE低側SiC MOSFET和IGBT柵極驅動器。這款創新的驅動器專門設計用于驅動工業應用中的碳化硅(SiCMOSFET和高功率絕緣
    的頭像 發表于 05-23 11:26 ?796次閱讀

    如何更好地驅動SiC MOSFET器件?

    IGBT的驅動電壓一般都是15V,而SiC MOSFET的推薦驅動電壓各品牌并不一致,15V、18V、20V都有廠家在用。更高的門極驅動電壓有助于降低器件導通損耗,SiC MOSFET
    的頭像 發表于 05-13 16:10 ?621次閱讀

    英飛凌科技推出新一代碳化硅(SiCMOSFET溝槽技術

    英飛凌科技推出新一代碳化硅(SiCMOSFET溝槽技術,開啟功率系統和能量轉換的新篇章。與上一代產品相比,英飛凌全新的 CoolSiC? MOS
    的頭像 發表于 04-20 10:41 ?1050次閱讀
    英飛凌科技推出新一代碳化硅(<b class='flag-5'>SiC</b>)<b class='flag-5'>MOSFET</b><b class='flag-5'>溝槽</b><b class='flag-5'>柵</b>技術

    深入對比SiC MOSFET vs Qorvo SiC FET

    眾多終端產品制造商紛紛選擇采用SiC技術替代硅基工藝,來開發基于雙極結型晶體管(BJT)、結場效應晶體管(JFET)、金屬氧化物半導體場效應晶體管(MOSFET)和絕緣雙極晶體管(
    發表于 04-10 12:31 ?1438次閱讀
    深入對比<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b> vs Qorvo <b class='flag-5'>SiC</b> FET

    溝槽當道,平面型SiC MOSFET尚能飯否?

    電子發燒友網報道(文/梁浩斌)最近,安森美發布了第二代1200V SiC MOSFET產品。安森美在前代SiC MOSFET產品中,采用M1及其衍生的M2技術平臺,而這次發布的第二代1
    的頭像 發表于 04-08 01:55 ?3977次閱讀

    MOSFET源振蕩究竟是怎么來的?源振蕩的危害什么?如何抑制

    MOSFET源振蕩究竟是怎么來的呢?源振蕩的危害什么?如何抑制或緩解源振蕩的現象呢? MOSFET(金屬-氧化物-半導體場效應晶體管
    的頭像 發表于 03-27 15:33 ?1641次閱讀

    英飛凌發布新一代碳化硅(SiC)MOSFET溝槽技術

    英飛凌科技股份公司推出的新一代碳化硅(SiCMOSFET溝槽技術,無疑為功率系統和能量轉換領域帶來了革命性的進步。與上一代產品相比,全新的CoolSiC?
    的頭像 發表于 03-20 10:32 ?941次閱讀

    全面提升!英飛凌推出新一代碳化硅技術CoolSiC MOSFET G2

    電子發燒友網報道(文/梁浩斌)近日英飛凌推出了CoolSiC MOSFET G2技術,據官方介紹,這是新一代的溝槽SiC MOSFET技術
    的頭像 發表于 03-19 18:13 ?2985次閱讀
    全面提升!英飛凌推出新一代碳化硅技術CoolSiC <b class='flag-5'>MOSFET</b> G2

    電橋電路驅動器和MOSFET驅動器產品介紹

    電橋電路驅動器和MOSFET驅動器產品介紹
    的頭像 發表于 03-19 09:43 ?664次閱讀
    電橋電路<b class='flag-5'>柵</b>驅動器和<b class='flag-5'>MOSFET</b><b class='flag-5'>柵</b>驅動器產品介紹

    英飛凌推出新一代碳化硅MOSFET溝槽技術

    在全球電力電子領域,英飛凌科技以其卓越的技術創新能力和領先的產品質量贏得了廣泛贊譽。近日,該公司宣布推出新一代碳化硅(SiCMOSFET溝槽技術,標志著功率系統和能量轉換領域邁入了
    的頭像 發表于 03-12 09:53 ?643次閱讀

    英飛凌推出新一代碳化硅技術CoolSi MOSFET G2

    在電力電子領域持續創新的英飛凌科技股份公司近日宣布,其已成功推出新一代碳化硅(SiCMOSFET溝槽技術——CoolSiC? MOSFET
    的頭像 發表于 03-12 09:43 ?698次閱讀

    3300V SiC MOSFET氧可靠性研究

    大功率領域,能顯著提高效率,降低裝置體積。在這些應用領域中,對功率器件的可靠性要求很高,為此,針對自主研制的3300V SiC MOSFET 開展氧可靠性研究。首先,按照常規的評估技術對其進行了高溫
    的頭像 發表于 01-04 09:41 ?2330次閱讀
    3300V <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b><b class='flag-5'>柵</b>氧可靠性研究

    新型溝槽SiCMOSFET器件研究

    SiC具有高效節能、穩定性好、工作頻率高、能量密度高等優勢,SiC溝槽MOSFET(UMOSFET)具有高溫工作能力、低開關損耗、低導通損耗、快速開關速度等特點
    的頭像 發表于 12-27 09:34 ?1227次閱讀
    新型<b class='flag-5'>溝槽</b><b class='flag-5'>SiC</b>基<b class='flag-5'>MOSFET</b>器件研究
    主站蜘蛛池模板: 精品国产乱码久久久久久软件| 久久视频这里只精品99re8久| 中文字幕人成人乱码亚洲影视| 日本亚洲精品色婷婷在线影院| 好男人在线高清WWW免费观看| 老湿影院色情a| 国产永久免费视频| 东北老妇xxxxhd| 69精品人人人人| 午夜福利电影| 日本色呦呦| 欧美 亚洲 日韩 中文2019| 国产高清视频a在线大全| xxxxxx视频| a视频在线观看| 9420高清完整版在线电影免费观看| 亚洲AV永久无码精品澳门| 少妇第一次交换| 天美传媒 免费观看| 色宅男看片午夜大片免费看| 日本最新免费区中文| 乳液全集电影在线观看| 神马电影dy888午夜我不卡| 欧洲最大无人区免费高清完整版 | 色狗综合网| 午夜一级视频| 亚洲永久精品ww47| 在线一本码道高清| CHINA末成年VIDEO学生| 成a人片亚洲日本久久| 国产精品成人不卡在线观看| 国产人人为我我为人人澡| 精品99久久久久成人网站| 久拍国产在线观看| 欧美另类videosbest| 午夜4k最新福利| 伊人精品国产| YELLOW免费观看2019| 国产中文字幕免费观看| 美女议员被泄裸照| 探花口爆颜射乳交日韩|