色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何在缺陷樣本少的情況下實現高精度的檢測

QQ475400555 ? 來源:機器視覺沙龍 ? 2023-06-26 09:54 ? 次閱讀

缺陷檢測是工業生產過程中的關鍵環節,其檢測結果的好壞直接影響著產品的質量。而在現實場景中,但產品瑕疵率非常低,甚至是沒有,缺陷樣本的不充足使得需要深度學習缺陷檢測模型準確率不高。如何在缺陷樣本少的情況下實現高精度的檢測呢?目前有兩種方法,一種是小樣本學習,另一種是用GAN。本文將介紹一種GAN用于無缺陷樣本產品表面缺陷檢測。

深度學習在計算機視覺主流領域已經應用的很成熟,但是在工業領域,比如產品表面缺陷檢測,總感覺沒有發揮深度學習的強大能力,近幾年表面缺陷的 相關研究主要是集中在各種借鑒主流神經網絡框架,從CNN到YOLO,SSD,甚至到語義分割的FCN相關論文,通過一些技術,對框架進行輕量化,對缺陷進行分類或檢測。不過,逃不出一個問題:一定要有缺陷樣本可供訓練,而且數量不能太少!當然,也有一些課題組使用稀疏編碼、字典學習、稀疏自編碼等對表面缺陷進行檢測,這類方法很有局限性,主要針對那些有周期性背景紋理的圖像,比如絲織品,印刷品等。國內外很多課題組、工業軟件公司都想開發出一些切合實際應用的算法軟件,在缺陷檢測領域,比較好的公司有:VIDI、Halcon等,聽說海康威視也在搞工業產品方便的算法研究。 論文標題:A Surface Defect Detection Method Based on Positive Samples 論文鏈接:https://doi.org/10.1007/978-3-319-97310-4_54 作者提出只依據已有的正常表面圖像樣本,通過一定的技術手段對缺陷樣本進行檢測,很好的將最近研究火熱的GAN應用于框架中,這一年,課題組的老師也一直討論這種方法的可行性,缺陷的檢測要不要有缺陷樣本,從稀疏自編碼,小樣本學習再到計算機視覺研究熱點之一的零樣本學習,得出結論:大多數工業產品表面缺陷檢測是需要缺陷樣本或者人為制作的缺陷樣本,論文雖然是沒有直接使用生產線上的缺陷樣本,但是通過算法人為的產生了缺陷樣本,并很好的融合和GAN在圖像修復領域的強大能力,整個框架的設計很巧妙。 文章思路:論文的整體思路就是GAN在圖像修復和重建方便具有很強大的能力,通過人為的去在正常樣本上“隨意”添加一些缺陷,訓練階段讓GAN去學習一個可以修復這些缺陷區域的網絡,檢測階段時,輸入一個真實缺陷樣本,訓練好的GAN會對其進行修復,再基于LBP可完成缺陷檢測。整個算法框架不需要真實的缺陷樣本和手工標簽,但是在框架中,人為的去產生(比如PS)一些缺陷區域。 通俗說: 作者利用GAN在圖像修復(重建)上的能力,在工業現場收集一些正常(無缺陷)樣本,人工PS一些缺陷,比如線條、斑點等。 訓練時,將PS的人工制作的缺陷圖像和原圖像做輸入樣本訓練GAN,得到一個具有圖像修復重建能力的網絡。 測試時,直接使用訓練好的GAN對采集到的圖像進行重建修復,如果樣本中中有缺陷區域,缺陷區域按照網絡設計,肯定需要修復,將修復后的圖像和原缺陷圖像使用LBP找出顯著差異區域即為缺陷區域。

01

主要內容

論文的主體框架思想是基于GAN網絡的結構。GAN 主要包括了兩個部分,即生成器 G與判別器 D。生成器主要用來學習真實圖像分布從而讓自身生成的圖像更加真實,以“騙過”判別器。判別器則需要對接收的圖片進行真假判別。在整個過程中,生成器努力地讓生成的圖像更加真實,而判別器則努力地去識別出圖像的真假,這個過程相當于一個博弈過程,隨著時間的推移,生成器和判別器在不斷地進行對抗,最終兩個網絡達到了一個動態均衡:生成器生成的圖像接近于真實圖像分布,而判別器識別不出真假圖像,對于給定圖像的預測為真的概率基本接近 0.5(這段話從李宏毅老師那引用的,致敬李老師)。

訓練階段

在訓練階段,模型采用一些圖像處理技術,人為的在正常樣本圖像上產生一些缺陷(示意圖中的紅色框模塊),使用由自編碼器構成的G模塊進行缺陷修復學習,學習的目標是與正常樣本之間的L1范數最小,通過一定數量的樣本訓練可以獲得有缺陷修復能力的G模塊。GAN用于圖像修復的一些資料可以參考[3][4],當然也可以參考論文里的參考文獻。 786afc4e-13b5-11ee-962d-dac502259ad0.png 訓練階段 ?

測試階段

在測試階段,將上步驟訓練好的G模塊作為測試階段的圖片修復模塊,對于輸出的圖像樣本,假如存在缺陷區域,通過修復模塊G將得到修復后的圖像,與原缺陷樣本圖像一起作為LBP算法的輸入,通過LBP算法對其缺陷區域進行精確定位。 7879d4ee-13b5-11ee-962d-dac502259ad0.png 測試階段 ?

02

其他細節

2.1缺陷生成 在實際訓練中,論文作者手工生成一些缺陷樣本,如圖3所示,訓練網絡自動修復缺陷。另外作者也通過一些技術進行了樣本的擴充,比如加入高斯噪聲、隨機resize大小等。 78874f5c-13b5-11ee-962d-dac502259ad0.jpg 缺陷生成 ? 3.2缺陷圖像重建 缺陷圖像重建部分主要的作用是:缺陷圖像重建后盡量和正常樣本一樣,作者在這部分在文獻[5][6]基礎上進行框架修改的,比如使用L1 distance作為衡量重建差異的目標函數。 789ae36e-13b5-11ee-962d-dac502259ad0.png ? 然后實驗中作者又發現只使用L1不行,圖像邊緣等細節可能會衡量不準確,又加入GAN loss來提升網絡的重建效果。 ? 78aa74aa-13b5-11ee-962d-dac502259ad0.png ? 最后,得到了下面目標函數。 ? 78bec20c-13b5-11ee-962d-dac502259ad0.png ? 2.3缺陷檢測 因為使用GAN修復后的圖片和原始缺陷樣本圖片之間在像素級的細節上有一些差異,作者使用了前幾年在人臉領域應用比較好的LBP算法進行缺陷區域的檢測,這里不介紹算法的細節,示意圖如下。 78d0cede-13b5-11ee-962d-dac502259ad0.png

03

實驗

文章對DAGM 2007數據集和織物密集圖像進行了驗證實驗。實驗表明,提出的GAN+LBP算法和有足夠訓練樣本的監督訓練算法具有較高的檢測準確率。實驗使用兩種類型的數據集,4.1是印花紋表面,4.2是織物表面。

4.1Texture surface 78dfa0bc-13b5-11ee-962d-dac502259ad0.png 測試樣本 ? 78ed1896-13b5-11ee-962d-dac502259ad0.png 結果 ? 78fc6012-13b5-11ee-962d-dac502259ad0.jpg a.原始圖像,b.修復圖像,c.論文方法,d. FCN方法,e.真實標簽 ? 3.2 Fabric Picture 實驗中缺陷樣本的類型有五種。實驗樣本按背景分有三類,每類包含5個缺陷樣本,25個正常樣本。 790d9f8a-13b5-11ee-962d-dac502259ad0.png 測試樣本 ? 791f3d12-13b5-11ee-962d-dac502259ad0.png 結果 ? 792d9b00-13b5-11ee-962d-dac502259ad0.jpg a.原始圖像,b.修復圖像,c.論文方法,d. FCN方法,e.真實標簽 ? 本人水平有限,表述不清楚或錯誤的地方請指出,一起進步!??

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 軟件
    +關注

    關注

    69

    文章

    4921

    瀏覽量

    87401
  • GaN
    GaN
    +關注

    關注

    19

    文章

    1933

    瀏覽量

    73286
  • 生成器
    +關注

    關注

    7

    文章

    315

    瀏覽量

    21003

原文標題:基于GAN的零缺陷樣本產品表面缺陷檢測

文章出處:【微信號:機器視覺沙龍,微信公眾號:機器視覺沙龍】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    請問ADS1292R如何在MCU休眠的情況下通過脫落檢測喚醒MCU?

    請問ADS1292R如何在MCU休眠的情況下通過脫落檢測喚醒MCU?
    發表于 11-28 08:03

    一種樣本污染且快拍數有限情況下的穩健的波束形成方法

    樣本污染情況下,期望信號方向上也可能形成零陷,導致輸出信號干擾噪聲比嚴重下降;快拍數有限情況下,假設的白噪聲表現為色噪聲,從而加劇了自適應波束形成畸變。基于此
    發表于 11-25 14:24 ?14次下載

    缺陷樣本的PCB焊點智能檢測方法_盧盛林

    缺陷樣本的PCB焊點智能檢測方法_盧盛林
    發表于 02-07 16:59 ?4次下載

    高精度、低功耗、小封裝電壓檢測芯片HX61C

    HX61C系列芯片是使用CMOS技術開發的高精度、低功耗、小封裝電壓檢測芯片。檢測電壓在小溫度漂移的情況下保持極高的精度。客戶可選擇CMOS
    發表于 04-26 09:30 ?0次下載
    <b class='flag-5'>高精度</b>、低功耗、小封裝電壓<b class='flag-5'>檢測</b>芯片HX61C

    關于正樣本的表面缺陷檢測

    ,然而這些方法往往是需要大量標注數據的有監督學習。 在實際的工業場景中,缺陷樣本往往是難以收集的,而且標注的成本也十分巨大。針對上述有監督學習在實際應用中存在的問題,本文提出了一種僅基于正樣本訓練的
    的頭像 發表于 05-29 10:23 ?3313次閱讀
    關于正<b class='flag-5'>樣本</b>的表面<b class='flag-5'>缺陷</b><b class='flag-5'>檢測</b>

    基于配準的樣本異常檢測的框架

    近年來,異常檢測在工業缺陷檢測、醫療診斷,自動駕駛等領域有著廣泛的應用。“異常”通常定義為 “正常” 的對立面,即所有不符合正常規范的樣本
    的頭像 發表于 07-27 10:27 ?1074次閱讀

    什么情況下要進行電能質量檢測

    什么情況下要進行電能質量檢測
    發表于 09-08 14:20 ?685次閱讀

    何在軟件中實現高精度NCO

    在本系列的第1部分中,我們將了解如何設計基于直接數字頻率合成(DDFS)原理的非常精確的正弦波發生器,但在浮點DSP處理器上通過軟件實現。在第 2 部分中,我們將介紹如何在軟件中實現高精度
    的頭像 發表于 11-28 17:06 ?1389次閱讀
    如<b class='flag-5'>何在</b>軟件中<b class='flag-5'>實現</b><b class='flag-5'>高精度</b>NCO

    何在沒有Arduino情況下制作機器人

    電子發燒友網站提供《如何在沒有Arduino情況下制作機器人.zip》資料免費下載
    發表于 12-05 09:58 ?0次下載
    如<b class='flag-5'>何在</b>沒有Arduino<b class='flag-5'>情況下</b>制作機器人

    如何應用Anomalib在數據集不平衡的情況下檢測缺陷

    基于監督式學習的方法利用足夠的注釋異常樣本,通常可用于實現令人滿意的異常檢測結果。
    的頭像 發表于 03-27 10:40 ?2541次閱讀

    高精度電流傳感器微電流檢測突破進展

    高精度電流傳感器微電流檢測突破進展 我司高精度微電流傳感器,目前的最小辨識度可以達到10uA,對于100uA的微小電流可以準確進行識別,可以在不破壞被測電流線的情況下
    的頭像 發表于 09-17 16:09 ?2604次閱讀
    <b class='flag-5'>高精度</b>電流傳感器微電流<b class='flag-5'>檢測</b>突破進展

    基于GAN的零缺陷樣本產品表面缺陷檢測

    情況下實現高精度檢測呢?目前有兩種方法,一種是小樣本學習,另一種是用GAN。本文將介紹一種GAN用于無
    的頭像 發表于 06-26 09:49 ?1095次閱讀
    基于GAN的零<b class='flag-5'>缺陷</b><b class='flag-5'>樣本</b>產品表面<b class='flag-5'>缺陷</b><b class='flag-5'>檢測</b>

    何在電壓不穩的情況下保障SSD的穩定性能?

    何在電壓不穩的情況下保障SSD的穩定性能?
    的頭像 發表于 11-24 15:50 ?645次閱讀
    如<b class='flag-5'>何在</b>電壓不穩的<b class='flag-5'>情況下</b>保障SSD的穩定性能?

    友思特應用 | 高精度呈現:PCB多類型缺陷檢測系統

    高精度呈現!友思特PCB多類型缺陷檢測系統,借由深度學習自動標注功能排查全部微小缺陷,為工業 PCB生產制造提供了先進可靠的質量保障。
    的頭像 發表于 04-10 17:51 ?899次閱讀
    友思特應用 | <b class='flag-5'>高精度</b>呈現:PCB多類型<b class='flag-5'>缺陷</b><b class='flag-5'>檢測</b>系統

    何在激光雷達和接近檢測中利用高速比較器提高精度

    電子發燒友網站提供《如何在激光雷達和接近檢測中利用高速比較器提高精度.pdf》資料免費下載
    發表于 09-02 09:33 ?0次下載
    如<b class='flag-5'>何在</b>激光雷達和接近<b class='flag-5'>檢測</b>中利用高速比較器提<b class='flag-5'>高精度</b>
    主站蜘蛛池模板: 久亚洲AV无码专区A片| 日韩久久影院| 久久久久夜| 免费观看亚洲视频| 欧美久久无码AV麻豆| 日本无码人妻丰满熟妇5G影院| 日产国产欧美韩国在线| 少妇被阴内射XXXB少妇BB| 幸福草电视剧演员表介绍| 亚洲AV无码乱码在线观看浪潮| 亚洲日韩视频免费观看| 97SE亚洲国产综合自在线不卡| my pico未删减在线观看| 毛片在线播放网址| 中文字幕在线观看| 蜜柚影院在线观看免费高清中文| 欲奴第一季在线观看全集| 久久热在线视频精品| 在线观看中文字幕码2021不用下载| 精品国产自在现线拍400部| 亚洲熟妇AV乱码在线观看| 加勒比一本之道高清视频在线观看 | 老色69久久九九精品高潮| 超碰在线线公开免费视频| 国产 精品 亚洲 欧美 高清| 男人和女人一起愁愁愁很痛| 2020精品极品国产色在线| 玖玖爱在线播放| 60老妇性xxxxhd| 欧美亚洲精品午夜福利AV| 白丝美女被狂躁免费漫画| 色一情一乱一伦一区二区三区| 高h原耽肉汁动漫视频| 午夜国产在线观看| 精品日产1区2卡三卡麻豆| 综合亚洲桃色第一影院| 欧美另类z0z000高清| 国产成人无码精品久久久免费69| 亚洲 自拍 欧洲 视频二区| 久久久久免费视频| x69老师x日本|