色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

SA-1B數(shù)據(jù)集的1/50進行訓(xùn)練現(xiàn)有的實例分割方法

3D視覺工坊 ? 來源:CVHub ? 2023-06-28 15:08 ? 次閱讀

導(dǎo)讀

SAM已經(jīng)成為許多高級任務(wù)(如圖像分割、圖像描述和圖像編輯)的基礎(chǔ)步驟。然而,其巨大的計算開銷限制了其在工業(yè)場景中的廣泛應(yīng)用。這種計算開銷主要來自于處理高分辨率輸入的Transformer架構(gòu)。因此,本文提出了一種具有可比性能的加速替代方法。通過將該任務(wù)重新定義為分割生成和提示,作者發(fā)現(xiàn)一個常規(guī)的CNN檢測器結(jié)合實例分割分支也可以很好地完成這個任務(wù)。具體而言,本文將該任務(wù)轉(zhuǎn)換為經(jīng)過廣泛研究的實例分割任務(wù),并僅使用SAM作者發(fā)布的SA-1B數(shù)據(jù)集的1/50進行訓(xùn)練現(xiàn)有的實例分割方法。使用這種方法,作者在50倍更快的運行時間速度下實現(xiàn)了與SAM方法相當(dāng)?shù)男阅堋1疚奶峁┝顺浞值膶嶒灲Y(jié)果來證明其有效性。

引言

SAM被認為是里程碑式的視覺基礎(chǔ)模型,它可以通過各種用戶交互提示來引導(dǎo)圖像中的任何對象的分割。SAM利用在廣泛的SA-1B數(shù)據(jù)集上訓(xùn)練的Transformer模型,使其能夠熟練處理各種場景和對象。SAM開創(chuàng)了一個令人興奮的新任務(wù),即Segment Anything。由于其通用性和潛力,這個任務(wù)具備成為未來廣泛視覺任務(wù)基石的所有要素。然而,盡管SAM及其后續(xù)模型在處理segment anything任務(wù)方面展示了令人期待的結(jié)果,但其實際應(yīng)用仍然具有挑戰(zhàn)性。顯而易見的問題是與SAM架構(gòu)的主要部分Transformer(ViT)模型相關(guān)的大量計算資源需求。與卷積模型相比,ViT以其龐大的計算資源需求脫穎而出,這對于其實際部署,特別是在實時應(yīng)用中構(gòu)成了障礙。這個限制因此阻礙了segment anything任務(wù)的進展和潛力。

鑒于工業(yè)應(yīng)用對segment anything模型的高需求,本文設(shè)計了一個實時解決方案,稱為FastSAM,用于segment anything任務(wù)。本文將segment anything任務(wù)分解為兩個連續(xù)的階段,即全實例分割和提示引導(dǎo)選擇。第一階段依賴于基于卷積神經(jīng)網(wǎng)絡(luò)(CNN)的檢測器的實現(xiàn)。它生成圖像中所有實例的分割掩碼。然后在第二階段,它輸出與提示相對應(yīng)的感興趣區(qū)域。通過利用CNN的計算效率,本文證明了在不太損失性能質(zhì)量的情況下,可以實現(xiàn)實時的segment anything模型。本文希望所提出的方法能夠促進對segment anything基礎(chǔ)任務(wù)的工業(yè)應(yīng)用。

1549dc6c-153f-11ee-962d-dac502259ad0.png

圖1. FastSAM和SAM的性能比較分析

(a) FastSAM和SAM在單個NVIDIA GeForce RTX 3090上的速度比較。(b) 在BSDS500數(shù)據(jù)集[1, 28]上進行邊緣檢測的比較。(c) COCO數(shù)據(jù)集[25]上對象提議的Box AR@1000評估中FastSAM和SAM的比較。SAM和FastSAM都使用PyTorch進行推理,只有FastSAM(TRT)使用TensorRT進行推理。

本文提出的FastSAM基于YOLACT方法的實例分割分支的目標(biāo)檢測器YOLOv8-seg。此外,還采用了由SAM發(fā)布的廣泛SA-1B數(shù)據(jù)集,通過僅在SA-1B數(shù)據(jù)集的2%(1/50)上直接訓(xùn)練該CNN檢測器,它實現(xiàn)了與SAM相當(dāng)?shù)男阅埽蟠蠼档土擞嬎愫唾Y源需求,從而實現(xiàn)了實時應(yīng)用。本文還將其應(yīng)用于多個下游分割任務(wù),展示了其泛化性能。在MS COCO 上的對象提議任務(wù)中,該方法在AR1000上達到了63.7,比使用32×32點提示輸入的SAM高1.2點,但在單個NVIDIA RTX 3090上運行速度提高了50倍。

實時的segment anything模型對于工業(yè)應(yīng)用非常有價值。它可以應(yīng)用于許多場景。所提出的方法不僅為大量視覺任務(wù)提供了新的實用解決方案,而且速度非常快,比當(dāng)前方法快幾十倍或幾百倍。此外,它還為通用視覺任務(wù)的大型模型架構(gòu)提供了新的視角。對于特定任務(wù)來說,特定的模型仍然可以利用優(yōu)勢來獲得更好的效率-準(zhǔn)確性平衡。

在模型壓縮的角度上,本文方法通過引入人工先驗結(jié)構(gòu),展示了顯著減少計算量的可行路徑。本文貢獻可總結(jié)如下:

引入了一種新穎的實時基于CNN的Segment Anything任務(wù)解決方案,顯著降低了計算需求同時保持競爭性能。

本研究首次提出了將CNN檢測器應(yīng)用于segment anything任務(wù),并提供了在復(fù)雜視覺任務(wù)中輕量級CNN模型潛力的見解。

通過在多個基準(zhǔn)測試上對所提出的方法和SAM進行比較評估,揭示了該方法在segment anything領(lǐng)域的優(yōu)勢和劣勢。

方法

下圖2展示了FastSAM網(wǎng)絡(luò)架構(gòu)圖。該方法包括兩個階段,即全實例分割和提示引導(dǎo)選擇。前一個階段是基礎(chǔ)階段,第二個階段本質(zhì)上是面向任務(wù)的后處理。與端到端的Transformer方法不同,整體方法引入了許多與視覺分割任務(wù)相匹配的人類先驗知識,例如卷積的局部連接和感受野相關(guān)的對象分配策略。這使得它針對視覺分割任務(wù)進行了定制,并且可以在較少的參數(shù)數(shù)量下更快地收斂。

15a1aa46-153f-11ee-962d-dac502259ad0.png

圖2. FastSAM網(wǎng)絡(luò)架構(gòu)圖

FastSAM包含兩個階段:全實例分割(AIS)和提示引導(dǎo)選擇(PGS)。先使用YOLOv8-seg 對圖像中的所有對象或區(qū)域進行分割。然后使用各種提示來識別感興趣的特定對象。主要涉及點提示、框提示和文本提示的利用。

實例分割

YOLOv8 的架構(gòu)是基于其前身YOLOv5 發(fā)展而來的,融合了最近算法(如YOLOX 、YOLOv6 和YOLOv7 )的關(guān)鍵設(shè)計。YOLOv8的主干網(wǎng)絡(luò)和特征融合模塊(neck module)將YOLOv5的C3模塊替換為C2f模塊。更新后的頭部模塊采用解耦結(jié)構(gòu),將分類和檢測分開,并從基于Anchor的方法轉(zhuǎn)向了基于Anchor-Free的方法。

YOLOv8-seg應(yīng)用了YOLACT的實例分割原理。它通過主干網(wǎng)絡(luò)和特征金字塔網(wǎng)絡(luò)(Feature Pyramid Network, FPN)從圖像中提取特征,集成了不同尺度的特征。輸出包括檢測分支和分割分支。檢測分支輸出目標(biāo)的類別和邊界框,而分割分支輸出k個原型(在FastSAM中默認為32個)以及k個掩碼系數(shù)。分割和檢測任務(wù)并行計算。分割分支輸入高分辨率特征圖,保留空間細節(jié),并包含語義信息。該特征圖經(jīng)過卷積層處理,上采樣,然后通過另外兩個卷積層輸出掩碼。與檢測頭部的分類分支類似,掩碼系數(shù)的范圍在-1到1之間。通過將掩碼系數(shù)與原型相乘并求和,得到實例分割結(jié)果。

YOLOv8可以用于各種目標(biāo)檢測任務(wù)。而通過實例分割分支,YOLOv8-Seg非常適用于segment anything任務(wù),該任務(wù)旨在準(zhǔn)確檢測和分割圖像中的每個對象或區(qū)域,而不考慮對象的類別。原型和掩碼系數(shù)為提示引導(dǎo)提供了很多可擴展性。例如,可以額外訓(xùn)練一個簡單的提示編碼器和解碼器結(jié)構(gòu),以各種提示和圖像特征嵌入作為輸入,掩碼系數(shù)作為輸出。在FastSAM中,本文直接使用YOLOv8-seg方法進行全實例分割階段。

提示引導(dǎo)選擇

在使用YOLOv8成功地對圖像中的所有對象或區(qū)域進行分割后,segment anything 任務(wù)的第二階段是利用各種提示來識別感興趣的特定對象。這主要涉及到點提示、框提示和文本提示的利用。

點提示

點提示的目標(biāo)是將所選點與第一階段獲得的各種掩碼進行匹配,以確定點所在的掩碼。類似于SAM在方法中采用前景/背景點作為提示。在前景點位于多個掩碼中的情況下,可以利用背景點來篩選出與當(dāng)前任務(wù)無關(guān)的掩碼。通過使用一組前景/背景點,我們能夠選擇感興趣區(qū)域內(nèi)的多個掩碼。這些掩碼將被合并為一個單獨的掩碼,完整標(biāo)記出感興趣的對象。此外,還可以利用形態(tài)學(xué)操作來提高掩碼合并的性能。

框提示

框提示涉及將所選框與第一階段中對應(yīng)的邊界框進行IoU(交并比)匹配。目標(biāo)是識別與所選框具有最高IoU得分的掩碼,從而選擇感興趣的對象。

文本提示

在文本提示的情況下,我們使用CLIP模型提取文本的相應(yīng)嵌入。然后,確定與每個掩碼的固有特征進行匹配的圖像嵌入,并使用相似度度量方法進行匹配。選擇與文本提示的圖像嵌入具有最高相似度得分的掩碼。

通過精心實施這些基于提示的選擇技術(shù),F(xiàn)astSAM可以可靠地從分割圖像中選擇特定的感興趣對象。上述方法為在實時情況下完成segment anything任務(wù)提供了高效的方式,從而極大地增強了YOLOv8模型在復(fù)雜圖像分割任務(wù)中的實用性。對于更有效的基于提示的選擇技術(shù),將留待未來探索。

實驗結(jié)果

16133fda-153f-11ee-962d-dac502259ad0.png

SAM和FastSAM在單個NVIDIA GeForce RTX 3090 GPU上的運行速度對比。可以看出,F(xiàn)astSAM在所有提示數(shù)量上超過了SAM。此外,F(xiàn)astSAM的運行速度與提示數(shù)量無關(guān),使其成為"Everything mode"的更好選擇。

162d4858-153f-11ee-962d-dac502259ad0.png

FastSAM分割結(jié)果

16e3bf02-153f-11ee-962d-dac502259ad0.png

邊緣檢測zero-shot能力評估-量化指標(biāo)評估

1706b3b8-153f-11ee-962d-dac502259ad0.png

邊緣檢測zero-shot能力評估-可視化結(jié)果評估

1740447a-153f-11ee-962d-dac502259ad0.png

在COCO的所有類別上與無需學(xué)習(xí)的方法進行比較。此處報告了無需學(xué)習(xí)的方法、基于深度學(xué)習(xí)的方法(在VOC上進行訓(xùn)練)以及本文方法與SAM方法在所有泛化上的平均召回率(AR)和AUC對比結(jié)果。

175a17f6-153f-11ee-962d-dac502259ad0.png

與OLN和SAM-H的比較

177fa43a-153f-11ee-962d-dac502259ad0.png

17a12fce-153f-11ee-962d-dac502259ad0.png

1823ad0a-153f-11ee-962d-dac502259ad0.png

183c051c-153f-11ee-962d-dac502259ad0.png

在異常檢測中的應(yīng)用,其中SAM-point/box/everything分別表示使用點提示、框提示和全部模式。

18767652-153f-11ee-962d-dac502259ad0.png

在顯著性分割中的應(yīng)用,其中SAM-point/box/everything分別表示使用點提示、框提示和全部模式。

18b8994c-153f-11ee-962d-dac502259ad0.png

在建筑物提取中的應(yīng)用,其中SAM-point/box/everything分別表示使用點提示、框提示和全部模式。

191a0efc-153f-11ee-962d-dac502259ad0.png

相比SAM,F(xiàn)astSAM在大對象的狹窄區(qū)域上可以生成更精細的分割掩碼。

Limitations

總體而言,F(xiàn)astSAM在性能上與SAM相當(dāng),并且比SAM (32×32) 快50倍,比SAM (64×64) 快170倍。其運行速度使其成為工業(yè)應(yīng)用的良好選擇,如道路障礙檢測、視頻實例跟蹤和圖像處理。在一些圖像上,F(xiàn)astSAM甚至能夠為大尺寸對象生成更好的掩碼。

195020b4-153f-11ee-962d-dac502259ad0.png

圖11

然而,正如實驗中所展示的,F(xiàn)astSAM在生成框上具有明顯的優(yōu)勢,但其掩碼生成性能低于SAM,如上圖11所示。FastSAM具有以下特點:

低質(zhì)量的小尺寸分割掩碼具有較高的置信度分數(shù)。作者認為這是因為置信度分數(shù)被定義為YOLOv8的邊界框分數(shù),與掩碼質(zhì)量關(guān)系不大。改變網(wǎng)絡(luò)以預(yù)測掩碼的IoU或其它質(zhì)量指標(biāo)是改進的一種方式。

一些微小尺寸對象的掩碼傾向于接近正方形。此外,大尺寸對象的掩碼可能在邊界框的邊緣出現(xiàn)一些偽影,這是YOLACT方法的弱點。通過增強掩碼原型的能力或重新設(shè)計掩碼生成器,可以預(yù)期解決這個問題。

結(jié)論

在本文中,我們重新思考了Segment Anything的任務(wù)和模型架構(gòu)選擇,并提出了一種替代方案,其運行速度比SAM-ViT-H (32×32)快50倍。實驗證明,F(xiàn)astSAM可以很好地解決多個下游任務(wù)。然而,F(xiàn)astSAM還存在一些可以改進的弱點,例如評分機制和實例掩碼生成范式。這些問題將留待未來的研究解決。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3226

    瀏覽量

    48809
  • SAM
    SAM
    +關(guān)注

    關(guān)注

    0

    文章

    112

    瀏覽量

    33519
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1208

    瀏覽量

    24689

原文標(biāo)題:中科院自動化所發(fā)布FastSAM | 精度相當(dāng),速度提升50倍!!!

文章出處:【微信號:3D視覺工坊,微信公眾號:3D視覺工坊】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    一個全新的無監(jiān)督不需要明確物體種類的實例分割算法

    這個問題也可以被解讀于:我們?nèi)绾瓮ㄟ^對現(xiàn)實世界中的部分信息來進行訓(xùn)練學(xué)習(xí),實現(xiàn)對激光點云中的實例物體進行推理。目前先進的方法也有通過語義
    的頭像 發(fā)表于 10-11 09:30 ?2602次閱讀

    數(shù)據(jù)高效缺陷檢測技術(shù)有哪些

    1. 摘要 CVPR VISION 23挑戰(zhàn)賽第1賽道 "數(shù)據(jù)智能缺陷檢測 "要求參賽者在數(shù)據(jù)缺乏的環(huán)境下對14個工業(yè)檢測數(shù)據(jù)
    的頭像 發(fā)表于 07-18 15:28 ?666次閱讀
    <b class='flag-5'>數(shù)據(jù)</b>高效缺陷檢測技術(shù)有哪些

    一種先分割后分類的兩階段同步端到端缺陷檢測方法

    出的擴展對總體結(jié)果改進的貢獻。簡介一種新穎的兩階段體系結(jié)構(gòu)已被證明在表面缺陷檢測中非常成功。具體來說,是在第一階段進行缺陷分割,然后在第二階段對有缺陷與無缺陷的表面按圖像分類。但是,現(xiàn)有的兩階
    發(fā)表于 07-24 11:01

    幾大主流公開遙感數(shù)據(jù)

    By 超神經(jīng)內(nèi)容提要:利用遙感影像進行土地類別分型,最常用的方法是語義分割。本文繼上期土地分類模型訓(xùn)練教程之后,又整理了幾大主流公開遙感數(shù)據(jù)
    發(fā)表于 08-31 07:01

    YOLOv6中的用Channel-wise Distillation進行的量化感知訓(xùn)練

    預(yù)測任務(wù)很有價值。  作者對一些密集的預(yù)測任務(wù)進行了實驗,包括語義分割和目標(biāo)檢測。實驗表明提出的方法大大優(yōu)于最先進的蒸餾方法,并且在訓(xùn)練期間
    發(fā)表于 10-09 16:25

    圖像分割基礎(chǔ)算法及實現(xiàn)實例

    圖像分割就是把圖像分成若干個特定的、具有獨特性質(zhì)的區(qū)域并提出感興趣目標(biāo)的技術(shù)和過程。它是由圖像處理到圖像分析的關(guān)鍵步驟。現(xiàn)有的圖像分割方法主要分以下幾類:基于閾值的
    發(fā)表于 12-18 18:19 ?9381次閱讀
    圖像<b class='flag-5'>分割</b>基礎(chǔ)算法及實現(xiàn)<b class='flag-5'>實例</b>

    索尼發(fā)布新的方法,在ImageNet數(shù)據(jù)上224秒內(nèi)成功訓(xùn)練了ResNet-50

    近年來,許多研究人員提出了多種方案來解決這兩個問題(見原文參考文獻)。這些工作利用ImageNet/ResNet-50訓(xùn)練來衡量訓(xùn)練效果。ImageNet/ResNet-50分別是最流
    的頭像 發(fā)表于 11-16 10:01 ?9816次閱讀

    算法 | 超Mask RCNN速度4倍,僅在單個GPU訓(xùn)練的實時實例分割算法

    YOLACT——Real-time Instance Segmentation提出了一種簡潔的實時實例分割全卷積模型,速度明顯優(yōu)于以往已有的算法,而且就是在一個 GPU 上訓(xùn)練取得的!
    的頭像 發(fā)表于 06-11 10:34 ?7282次閱讀

    在一個很小的Pascal VOC數(shù)據(jù)訓(xùn)練一個實例分割模型

    的應(yīng)用,如自動駕駛汽車或醫(yī)療診斷。在這些任務(wù)中,我們依靠機器的能力來識別物體。 我們經(jīng)常看到的與目標(biāo)識別相關(guān)的任務(wù)有4個:分類和定位、目標(biāo)檢測、語義分割實例分割。 在分類和定位中,我們感興趣的是為圖像中目標(biāo)的分配類標(biāo)簽,并在目
    的頭像 發(fā)表于 12-26 11:26 ?6054次閱讀

    分析總結(jié)基于深度神經(jīng)網(wǎng)絡(luò)的圖像語義分割方法

    隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展及其在語義分割領(lǐng)域的廣泛應(yīng)用,語義分割效果得到顯著提升。對基于深度神經(jīng)網(wǎng)絡(luò)的圖像語義分割方法進行分析與總結(jié),根據(jù)網(wǎng)
    發(fā)表于 03-19 14:14 ?21次下載
    分析總結(jié)基于深度神經(jīng)網(wǎng)絡(luò)的圖像語義<b class='flag-5'>分割</b><b class='flag-5'>方法</b>

    基于X光圖片的實例分割垃圾數(shù)據(jù)WIXRay (Waste Item X- Ray)

    提出了第一個基于 X 光圖片的、實例級別的垃圾分割數(shù)據(jù) (WIXRay)。數(shù)據(jù)集中包含 5,038 張 X 光圖片,共 30,845 個垃
    的頭像 發(fā)表于 08-08 10:58 ?1696次閱讀

    語義分割數(shù)據(jù):從理論到實踐

    語義分割是計算機視覺領(lǐng)域中的一個重要問題,它的目標(biāo)是將圖像或視頻中的語義信息(如人、物、場景等)從背景中分離出來,以便于進行目標(biāo)檢測、識別和分類等任務(wù)。語義分割數(shù)據(jù)
    的頭像 發(fā)表于 04-23 16:45 ?927次閱讀

    基于通用的模型PADing解決三大分割任務(wù)

    1. 研究動機 圖像分割旨在將具有不同語義的像素進行分類進而分組,例如類別或實例,近年來取得飛速的發(fā)展。然而,由于深度學(xué)習(xí)方法
    的頭像 發(fā)表于 06-26 10:39 ?537次閱讀
    基于通用的模型PADing解決三大<b class='flag-5'>分割</b>任務(wù)

    復(fù)旦開源LVOS:面向真實場景的長時視頻目標(biāo)分割數(shù)據(jù)

    現(xiàn)有的視頻目標(biāo)分割(VOS)數(shù)據(jù)主要關(guān)注于短時視頻,平均時長在3-5秒左右,并且視頻中的物體大部分時間都是可見的。然而在實際應(yīng)用過程中,用戶所需要
    的頭像 發(fā)表于 09-04 16:33 ?1121次閱讀
    復(fù)旦開源LVOS:面向真實場景的長時視頻目標(biāo)<b class='flag-5'>分割</b><b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>集</b>

    機器視覺圖像分割方法有哪些?

    現(xiàn)有的圖像分割方法主要分以下幾類:基于閾值(threshold)的分割方法、基于區(qū)域的分割
    發(fā)表于 11-02 10:26 ?1256次閱讀
    機器視覺圖像<b class='flag-5'>分割</b>的<b class='flag-5'>方法</b>有哪些?
    主站蜘蛛池模板: 久久国产主播福利在线| 伦理电影v男人天堂| 欧美重口绿帽video| 亚洲电影成人 成人影院| videosgrati欧美另类| 久99视频精品免费观看福利| 乳色吐息未增删樱花ED在线观看 | 秋霞网在线伦理影片| 亚洲野狼综合网站| 俄罗斯性xxxx| 欧美成人免费观看久久| 一受n攻高h全肉np| 国产亚洲精品精华液| 日韩一区二区三区射精| 99re久久精品在线播放| 久久精品亚洲AV中文2区金莲| 午夜影视免费| 粉嫩AV国产一区二区福利姬| 男人舔女人的阴部黄色骚虎视频| 亚洲熟女乱色一区二区三区| 国产欧美日韩网站| 桃花在线观看播放| 抽插的日日液液H| 欧美日韩永久久一区二区三区| 中文无码在线观| 久久9精品区-无套内射无码| 亚洲乱妇88网| 国产亚洲精品久久久久久国模美| 色屁屁影院| 吃奶啃奶玩乳漫画| 青青草原伊人| JizzJizzJizz亚洲成年| 奶水太多h室友| 99re28久久热在线观看| 久久综久久美利坚合众国| 伊人电院网| 久久国产一区二区三区| 影音先锋色小姐| 久久久无码精品一区二区三区| 亚洲综合色婷婷在线影院| 狠狠色狠狠色综合日日2019|