色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

讓自動駕駛汽車“看透”拐角

傳感器技術 ? 來源:傳感器技術 ? 2023-07-04 10:14 ? 次閱讀

基于駛近城市十字路口(拐角處有4棟高層混凝土建筑)的一輛自動駕駛汽車的建模,可以對自動駕駛汽車看清拐角路況的情形進行仿真。另一輛車正從某方向靠近路口中心,盡管超出了自動駕駛汽車的視距,系統仍可通過處理多條路徑反射回來或直接穿過建筑物返回的信號檢測到該車輛。

要讓自動駕駛汽車名副其實,需滿足諸多要求,但毫無疑問,對環境的感知和了解最為關鍵。自動駕駛汽車必須跟蹤并識別多個物體和目標,無論其清晰可見還是隱而不見,無論艷陽高照還是狂風暴雨。

光靠如今的雷達還遠不足以實現這種效果,我們還需要攝像頭和激光雷達,但若能充分利用雷達的特殊優勢,也許至少可以省去部分輔助傳感器

92d6071c-19f6-11ee-962d-dac502259ad0.jpg

誠然,立體模式下的傳統攝像頭可以檢測物體、測量物體距離并估算物體速度,但其精度無法達到完全自動駕駛的要求。此外,攝像頭在夜間、有霧或陽光直射的情況下均無法正常工作,使用傳統攝像頭的系統很容易被視錯覺欺騙。激光掃描系統或激光雷達自帶照明往往在惡劣天氣下的確優于攝像頭。盡管如此,它們也只能在清晰視距內看到前方,在被建筑物或其他障礙物遮擋的情況下,無法檢測到接近十字路口的汽車。

雷達的測距精度和角分辨率不如激光雷達高,角分辨率是在兩個不同目標之間分辨出其中一個目標所需的最小到達角。不過,我們設計了一種新穎的雷達架構,克服了此類缺陷,使其在增強激光雷達和攝像頭方面更加有效。

930e202a-19f6-11ee-962d-dac502259ad0.jpg

我們提出的架構采用了稀疏、大口徑多波段雷達。其基本理念是使用多種頻率,利用各頻率的特定屬性,將系統從多變的天氣條件中解放出來,透視并環顧觀察路口情況。反過來,該系統采用了先進的信號處理和傳感器融合算法來生成環境的集成表示。

我們已通過試驗驗證了該雷達系統的理論性能極限,包括有效距離、角分辨率和精度。目前,我們正在為多家汽車制造商構建硬件以進行評估,且最近的道路測試已取得成功。我們在2022年年初進行了更精細的測試,以展示該系統的路口轉角感知性能。

每個頻段皆有其優點和缺點。77千兆赫(GHz)及以下的頻段可穿透1 000米的濃霧,且損耗的信號強度不超過1分貝(dB)。相比之下,激光雷達和攝像頭在50米的濃霧中便會損耗10到15分貝。

雨水則是另一種情況。即便是小陣雨,也會令77GHz雷達像激光雷達一樣衰減。你可能會想,這沒問題,改成更低的頻率就行。畢竟,在1GHz或更低的頻率下,雨對雷達而言可以說是透明的。

低頻確實可行,但我們也需要高頻段,因為低頻段的有效距離較短且角分辨率較低。盡管高頻未必等同于窄波束,但可以使用天線陣列或高度定向天線,以窄波束投射較高頻段中的毫米波,就像激光那樣。這意味著這種雷達可以與激光雷達系統一爭高下,盡管它同樣存在視距之外無法觀測的問題。

對于給定尺寸(即給定陣列孔徑)的天線,波束的角分辨率與工作頻率成反比。同樣,為了實現給定的角分辨率,所需的頻率與天線尺寸成反比。因此,若要在相對較低的超高頻(UHF,0.3 ~1GHz)下依靠雷達系統獲得所需的角分辨率,需要的天線陣列是K波段(18 ~27GHz)或W波段(75 ~110GHz)雷達所需天線陣列的數十倍。

盡管較低的頻率對提高分辨率并無多大幫助,但它有其他優勢。電磁波往往會在尖銳的邊緣衍射;遇到曲面時,它們會在周圍以“爬行”波的形式衍射。這些效應太弱,無法在K波段的較高頻率下產生效果,W波段尤為如此,但在UHF和C波段(4 ~8GHz)可能效果顯著。這種衍射行為以及較低的穿透損耗使此類雷達能夠檢測到拐角處的物體。

雷達的一個弱點在于它會遵循多條路徑,在往返抵達被跟蹤物體的途中會被無數物體反射。由于道路上存在許多其他汽車雷達,因此雷達的回波更為復雜。不過,多次反射也有另一個優勢:范圍廣泛的彈跳可為計算機提供信息,反映沿視距投射的光束無法到達處所發生的情況,例如,揭示直接探測無法看到的交叉路口的路況。

看得遠,看得到細節,看得清側面,甚至能夠直接穿透障礙物,這是雷達尚未完全實現的目標。沒有一個雷達頻段可單獨實現所有效果,但一個可在多頻段同時運行的系統卻可以非常接近這一目標。例如,K波段和W波段等高頻段可實現高分辨率,同時準確估計目標的位置和速度,但它們無法穿透建筑物的墻壁或看清角落情況;更重要的是,它們容易受到大雨、大霧和灰塵的影響。

UHF和C波段等較低頻段不太容易受到上述問題的影響,但它們需要更大的天線元件且可用帶寬較少,這會降低測距分辨率,測距分辨率是區分方位相似但距離不同的兩個物體的能力。要達到既定角分辨率,較低的頻段還需要大孔徑。通過將不同頻段組合在一起,我們可以平衡某個頻段的弱點和其他頻段的優勢。

932f7838-19f6-11ee-962d-dac502259ad0.jpg

不同的目標給我們的多頻段解決方案帶來了不同挑戰。汽車前部在UHF波段的雷達截面(或有效反射率)比C波段和K波段的要小。這意味著使用C波段和K波段更容易檢測到正在靠近的車輛。此外,與C波段和K波段相比,在UHF波段,行人的不同行進方向和步態給其截面帶來的變化要小得多。這意味著行人將更容易被UHF雷達探測到。

此外,當散射體表面有水時,物體的雷達截面會減小。這就減少了C波段和K波段可測到的雷達反射,但是此現象不會對UHF雷達產生明顯影響。

另一個重要區別在于較低頻率的信號可穿透墻壁、穿過建筑物,而較高頻率的信號則無法做到這一點。以一堵30厘米厚的混凝土墻為例,雷達波穿過墻壁而非被墻壁反射的能力可通過波長、入射場的極化和入射角的函數計算。UHF頻段在大范圍入射角的傳輸系數約為-6.5dB。C波段和K波段的該數值分別下降為-35dB和-150dB,這意味著可以通過的能量很少。

如前所述,雷達的角分辨率與所用波長成正比,而角分辨率還與孔徑寬度成反比,對于線性陣列天線而言,它與陣列的物理長度成反比。這就是毫米波(如W波段和K波段)可以很好地用于自動駕駛的原因之一。一個基于兩個77GHz收發器、孔徑為6厘米的商用雷達裝置的角分辨率約為2.5度,與典型的激光雷達系統相比,其差值在一個數量級以上,這對自動駕駛而言太低。在77GHz下實現激光雷達標準分辨率需要更大的孔徑(如1.2米),約等于汽車的寬度。

除了達到一定的有效距離和角分辨率之外,汽車的雷達系統還必須跟蹤大量目標,有時需同時跟蹤數百個目標。若目標與汽車的距離僅相隔數米,則可能很難按距離區分目標。在任何給定距離內,一個均勻的線性陣列(發射和接收元件等距分布)能夠區分的目標數量與其天線數量相同。因此,在可能存在大量目標的雜亂環境中,需要數百個類似的發射器和接收器,而且巨大的孔徑會使問題更復雜。如此之多的硬件也會大幅拉高成本。

使用陣列是解決此問題的一種方法,陣列中的元件只占用通常情況下的一部分位置。如果仔細地設計這樣一個“稀疏”陣列,使其相互的幾何距離都是唯一的,便可使其性能與非稀疏的全尺寸陣列相同。例如從一個K波段運行的1.2米孔徑雷達入手,放入設計合理的稀疏陣列,該陣列只有12個發射元件和16個接收元件,則它的性能與擁有192個元件的標準陣列相同。其原因在于,精心設計的稀疏陣列在每個發射器和接收器之間可實現多達12×16(即192)個成對距離。使用12種不同的信號傳輸,16個接收天線將接收192個信號。由于各發射接收對之間的成對距離唯一,因此所得到的192個接收信號就像是由192個元件的非稀疏陣列接收的一樣。所以,借助稀疏陣列,我們可以用時間換取空間,即使用天線元件進行信號傳輸。

原則上,沿車載的假想陣列放置的單獨雷達單元應作為更大孔徑的單個相控陣單元運行。然而,該方案需要單獨子陣列的各發射天線聯合傳輸,并聯合處理聯合子陣的各天線單元收集的數據,這又反過來要求所有子陣列單元的相位完全同步。

這一切都不容易實現。即便可以實現,這種完全同步的分布式雷達的性能仍然遠遠落后于精心設計的完全集成、大口徑稀疏陣列雷達。

假設有兩個77GHz的雷達系統,每個系統的孔徑長度為1.2米,配備12個發射元件和16個接收元件。第一個系統是精心設計的稀疏陣列;第二個系統的孔徑最外側則有兩個14元件標準陣列。這兩個系統的孔徑和天線元件數量相同。盡管集成稀疏設計的掃描效果相同,但分離式設計難以從陣列前部直視前方。這是因為兩束天線相距甚遠,其中心產生了一個盲點。

在采用分離式設計的場景下,可假設兩種情況。第一種情況下,分離式系統兩端的兩個標準雷達陣列幾近完全同步。此設計有45%的時間無法檢測到物體。在第二種情況下,假設各陣列獨立運行,然后將其各自獨立檢測到的對象融合在一起。這一設計有幾乎60%的時間都會檢測失敗。相比之下,精心設計的稀疏陣列檢測失敗的可能性微乎其微。

通過仿真,我們可以輕松描繪出拐角處的景象。假設一輛配備了我們系統的自動駕駛汽車正在靠近一個城市十字路口,路口的4個角落各有一棟高層混凝土建筑。仿真開始時,車輛距離交叉路口中心35米,第二輛車正通過交叉路口接近中心。正在靠近的車輛不在自動駕駛汽車的視距范圍內,因此,如果不使用街角環視技術便無法檢測到駛近的車輛。

雷達系統在3個頻段中的各頻段均可預估視距內目標的距離和方位。在這種情況下,目標的距離等于光速乘以發射的電磁波返回雷達所需時間的一半。目標的方位則通過雷達接收到的波前入射角確定。當目標不在視距范圍內且信號沿多條路徑返回時,此方法無法直接測得目標的距離或位置。

不過,我們可以推斷目標的距離和位置。首先,我們需要區分視距、多路徑和穿過建筑物的返回波。在給定距離內,多路徑返回波(由于多次反射)通常較弱且極化不同。穿過建筑物的回波也較弱。如果我們知道基本環境(建筑物和其他靜止物體的位置),便可以構建一個框架,找出真實目標的可能位置。然后,我們可使用該框架來估測目標在某個位置的可能性。

隨著自動駕駛汽車和各目標的移動,雷達會收集到更多數據,每條新的數據都可用于更新概率。這就是貝葉斯邏輯,與其在醫學診斷中的應用十分類似。病人有無發熱?如發熱,是否出現皮疹?同樣,汽車系統每一次更新估算值,都會縮小可能的范圍,直至最終顯示真實目標的位置,同時消除“虛假目標”。通過融合從多個頻段獲得的信息,可顯著提高系統的性能。

我們通過試驗和數值仿真模擬評估了雷達系統在各種操作條件下的理論性能極限。道路測試證實,雷達可檢測到被遮擋的信號。接下來的幾個月,我們計劃展示轉角感應。希望此類功能能夠實現前所未有的安全駕駛方式。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 攝像頭
    +關注

    關注

    59

    文章

    4837

    瀏覽量

    95601
  • 激光雷達
    +關注

    關注

    968

    文章

    3969

    瀏覽量

    189830
  • 自動駕駛
    +關注

    關注

    784

    文章

    13786

    瀏覽量

    166399

原文標題:讓自動駕駛汽車“看透”拐角

文章出處:【微信號:WW_CGQJS,微信公眾號:傳感器技術】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    MEMS技術在自動駕駛汽車中的應用

    MEMS技術在自動駕駛汽車中的應用主要體現在傳感器方面,這些傳感器為自動駕駛汽車提供了關鍵的環境感知和數據采集能力。以下是對MEMS技術在自動駕駛
    的頭像 發表于 11-20 10:19 ?318次閱讀

    自動駕駛汽車安全嗎?

    隨著未來汽車變得更加互聯,汽車逐漸變得更加依賴技術,并且逐漸變得更加自動化——最終實現自動駕駛,了解自動駕駛
    的頭像 發表于 10-29 13:42 ?504次閱讀
    <b class='flag-5'>自動駕駛</b><b class='flag-5'>汽車</b>安全嗎?

    自動駕駛HiL測試方案案例分析--ADS HiL測試系統#ADAS #自動駕駛 #VTHiL

    自動駕駛
    北匯信息POLELINK
    發布于 :2024年10月22日 15:20:19

    自動駕駛技術的典型應用 自動駕駛技術涉及到哪些技術

    自動駕駛技術的典型應用 自動駕駛技術是一種依賴計算機、無人駕駛設備以及各種傳感器,實現汽車自主行駛的技術。它通過使用人工智能、視覺計算、雷達、監控裝置和全球定位系統等技術,使
    的頭像 發表于 10-18 17:31 ?712次閱讀

    聊聊自動駕駛離不開的感知硬件

    自動駕駛飛速發展,繞不開感知、決策和控制決策的經典框架,而感知作為自動駕駛汽車“感官”的重要組成部分,決定了自動駕駛系統對環境的理解和反應能力。為了
    的頭像 發表于 08-23 10:18 ?483次閱讀

    FPGA在自動駕駛領域有哪些優勢?

    FPGA(Field-Programmable Gate Array,現場可編程門陣列)在自動駕駛領域具有顯著的優勢,這些優勢使得FPGA成為自動駕駛技術中不可或缺的一部分。以下是FPGA在自動駕駛
    發表于 07-29 17:11

    FPGA在自動駕駛領域有哪些應用?

    低,適合用于實現高效的圖像算法,如車道線檢測、交通標志識別等。 雷達和LiDAR處理:自動駕駛汽車通常會使用雷達和LiDAR(激光雷達)等多種傳感器來獲取環境信息。FPGA能夠協助完成這些傳感器
    發表于 07-29 17:09

    自動駕駛汽車如何識別障礙物

    自動駕駛汽車識別障礙物是一個復雜而關鍵的過程,它依賴于多種傳感器和技術的協同工作。這些傳感器主要包括激光雷達(LiDAR)、雷達、攝像頭以及超聲波雷達等,它們各自具有不同的工作原理和優勢,共同為自動駕駛
    的頭像 發表于 07-23 16:40 ?1166次閱讀

    自動駕駛汽車傳感器有哪些

    自動駕駛汽車傳感器是實現自動駕駛功能的關鍵組件,它們通過采集和處理車輛周圍環境的信息,為自動駕駛系統提供必要的感知和決策依據。以下是對自動駕駛
    的頭像 發表于 07-23 16:00 ?2297次閱讀

    吉利與Foretellix合作開發自動駕駛汽車

    汽車制造商吉利與以色列的自動駕駛安全技術領軍企業Foretellix達成了戰略合作。此次合作旨在確保自動駕駛汽車的安全大規模部署,并尋求降低吉利的研發成本,同時提升開發效率。
    的頭像 發表于 05-14 09:52 ?428次閱讀

    未來已來,多傳感器融合感知是自動駕駛破局的關鍵

    技術 ,攝像頭和雷達等多傳感器的探測數據 在前端(數據獲取時)交互驗證,自動駕駛系統能感知到“看不見”的危險。 例如,在反向車道有強遠光燈干擾的情況下,當雷達子系統探測到潛在運動目標時,融合感知系統
    發表于 04-11 10:26

    大眾汽車和Mobileye加強自動駕駛合作

    美國智能駕駛芯片巨頭Mobileye與大眾汽車集團近日宣布,在自動駕駛領域深化合作,共同推動全新自動駕駛功能在大眾旗下量產車型的應用。Mobileye依托其領先的Mobileye
    的頭像 發表于 03-22 11:46 ?920次閱讀

    自動駕駛汽車技術 | 車載雷達系統

    自動駕駛汽車技術 | 車載雷達系統
    的頭像 發表于 03-20 08:09 ?3058次閱讀
    <b class='flag-5'>自動駕駛</b><b class='flag-5'>汽車</b>技術 | 車載雷達系統

    自動駕駛發展問題及解決方案淺析

    隨著科技的飛速進步,自動駕駛汽車已經從科幻概念逐漸轉變為現實。然而,在其蓬勃發展的背后,自動駕駛汽車仍面臨一系列亟待解決的問題和挑戰。本文將對這些問題進行深入的剖析,并提出相應的解決方
    的頭像 發表于 03-14 08:38 ?1133次閱讀

    Waymo自愿召回444輛自動駕駛汽車 L4的自動駕駛還有很多路要走

    近日,谷歌旗下的自動駕駛部門Waymo自愿召回了444輛自動駕駛汽車,原因是其軟件可能無法準確預測拖曳車輛的運動軌跡
    的頭像 發表于 02-26 10:22 ?1188次閱讀
    Waymo自愿召回444輛<b class='flag-5'>自動駕駛</b><b class='flag-5'>汽車</b> L4的<b class='flag-5'>自動駕駛</b>還有很多路要走
    主站蜘蛛池模板: 国产午夜在线视频| 国产99视频精品免费播放| write as 跳蛋| 国产精品卡1卡2卡三卡四| 精品一区二区免费视频蜜桃网| 恋夜秀场支持安卓版全部视频国产| 暖暖 免费 日本 高清 在线1| 十九岁在线观看免费完整版电影| 亚洲国语在线视频手机在线| 97人妻碰视频在线观看| 国产精品青青草原app大全| 美女白虎穴| 麻美ゆま夫の目の前で犯 | 四虎影视库永久免费| 浴室里强摁做开腿呻吟的漫画男男| caoporn 超碰免费视频| 国产亚洲精品久久综合阿香蕉| 欧美 亚洲综合在线一区| 亚洲精品影院久久久久久| 国产a视频视卡在线| 男人电影天堂手机| 影音先锋 av天堂| 国产人成精品综合欧美成人| 精品国产在线国语视频| 日本人的xxxxxxxxx69| 永久免费看bbb| 国产精品自产拍在线观看网站| 蜜臀AV99无码精品国产专区| 香港成人社区| 吃奶吸咪咪动态图| 男人吃奶摸下挵进去啪啪| 亚洲欧美国产双大乳头| 成人欧美一区二区三区白人| 久久免费看少妇级毛片蜜臀| 涩涩免费网站| 中国比基尼美女| 好男人好资源视频高清| 无码人妻丰满熟妇啪啪网不卡| Chineseman瘦老头77| 免费国产成人高清在线观看视频| 亚洲国产货青视觉盛宴|