色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

英特爾通過軟硬件為LIama 2大模型提供加速,持續發力推動AI發展

英特爾中國 ? 來源:未知 ? 2023-07-21 18:15 ? 次閱讀

英特爾廣泛的AI硬件組合及開放的軟件環境,為Meta發布的Llama 2模型提供了極具競爭力的選擇,進一步助力大語言模型的普及,推動AI發展惠及各行各業。

大語言模型(LLM)在生成文本、總結和翻譯內容、回答問題、參與對話以及執行復雜任務(如解決數學問題或推理)方面表現出的卓越能力,使其成為最有希望規模化造福社會的AI技術之一。大語言模型有望解鎖更豐富的創意和洞察,并激發AI社區推進技術發展的熱情。

Llama 2旨在幫助開發者、研究人員和組織構建基于生成式AI的工具和體驗。Meta發布了多個Llama 2的預訓練和微調版本,擁有70億、130億和700億三種參數。通過Llama 2,Meta在公司的各個微調模型中采用了三項以安全為導向的核心技術:安全的有監督微調、安全的目標文本提取以及安全的人類反饋強化學習(RLHF)。這些技術相結合,使Meta得以提高安全性能。隨著越來越廣泛的使用,人們將能夠以透明、公開的方式不斷識別并降低生成有害內容的風險。

英特爾致力于通過提供廣泛的硬件選擇和開放的軟件環境,推動AI的發展與普及。英特爾提供了一系列AI解決方案,為AI社區開發和運行Llama 2等模型提供了極具競爭力和極具吸引力的選擇。英特爾豐富的AI硬件產品組合與優化開放的軟件相結合,為應對算力挑戰提供了可行的方案。

英特爾提供了滿足模型的開發和部署的AI優化軟件。開放生態系統是英特爾得天獨厚的戰略優勢,在AI領域亦是如此。我們致力于培育一個充滿活力的開放生態系統來推動AI創新,其安全、可追溯、負責任以及遵循道德,這對整個行業至關重要。此次發布的大模型進一步彰顯了我們的核心價值觀——開放,為開發人員提供了一個值得信賴的選擇。Llama 2模型的發布是我們行業向開放式AI發展轉型邁出的重要一步,即以公開透明的方式推動創新并助力其蓬勃發展。

--李煒

英特爾軟件與先進技術副總裁

人工智能和分析部門總經理

-- Melissa Evers

英特爾軟件與先進技術副總裁

兼執行戰略部總經理

在Llama 2發布之際,我們很高興地分享70億和130億參數模型的初始推理性能測試結果。這些模型在英特爾AI產品組合上運行,包括HabanaGaudi2 深度學習加速器、第四代英特爾至強可擴展處理器、英特爾至強CPU Max系列和英特爾數據中心GPU Max系列。我們在本文中分享的性能指標是我們當前軟件提供的“開箱即用”的性能,并有望在未來的軟件中進一步提升。我們還支持700億參數模型,并將很快分享最新相關信息

HabanaGaudi2 深度學習加速器

Habana Gaudi2旨在為用戶提供高性能、高能效的訓練與推理,尤其適用于諸如Llama和Llama 2的大語言模型。Gaudi2加速器具備96GB HBM2E的內存容量,可滿足大語言模型的內存需求并提高推理性能。Gaudi2配備HabanaSynapseAI軟件套件,該套件集成了對PyTorch和DeepSpeed的支持,以用于大語言模型的訓練和推理。此外,SynapseAI近期開始支持HPU Graphs和DeepSpeed推理,專門針對時延敏感度高的推理應用。Gaudi2還將進行進一步的軟件優化,包括計劃在2023年第三季度支持FP8數據類型。此優化預計將在執行大語言模型時大幅提高性能、吞吐量,并有效降低延遲。

大語言模型的性能需要靈活敏捷的可擴展性,來突破服務器內以及跨節點間的網絡瓶頸。每張Gaudi2芯片集成了21個100Gbps以太網接口,21個接口專用于連接服務器內的8顆Gaudi2,該網絡配置有助于提升服務器內外的擴展性能。

在近期發布的MLPerf基準測試中,Gaudi2在大語言模型上展現了出色的訓練性能,包括在384個Gaudi2加速器上訓練1750億參數的GPT-3模型所展現的結果。Gaudi2經過驗證的高性能使其成為Llama和Llama 2模型訓練和推理的高能效解決方案。

圖1顯示了70億參數和130億參數Llama 2模型的推理性能。模型分別在一臺Habana Gaudi2設備上運行,batch size=1,輸出token長度256,輸入token長度不定,使用BF16精度。報告的性能指標為每個token的延遲(不含第一個)。該測試使用optimum-habana文本生成腳本在Llama模型上運行推理。optimum-habana庫能夠幫助簡化在Gaudi加速器上部署此類模型的流程,僅需極少的代碼更改即可實現。如圖1所示,對于128至2000輸入token,在70億參數模型上Gaudi2的推理延遲范圍為每token 9.0-12.2毫秒,而對于130億參數模型,范圍為每token 15.5-20.4毫秒1

wKgZomToEiGAUXfFAAGHaOrFSeA660.png

圖1基于Habana Gaudi2,70億和130億參數Llama 2模型的推理性能

若想訪問Gaudi2,可按照此處(https://developer.habana.ai/intel-developer-cloud/)在英特爾開發者云平臺上注冊一個實例,或聯系超微(Supermicro)了解Gaudi2服務器基礎設施。

英特爾至強可擴展處理器

第四代英特爾至強可擴展處理器是一款通用計算處理器,具有英特爾高級矩陣擴展(英特爾AMX)的AI加速功能。具體而言,該處理器的每個核心內置了BF16和INT8通用矩陣乘(GEMM)加速器,以加速深度學習訓練和推理工作負載。此外,英特爾至強CPU Max系列,每顆CPU提供64GB的高帶寬內存(HBM2E),兩顆共128GB,由于大語言模型的工作負載通常受到內存帶寬的限制,因此,該性能對于大模型來說極為重要。

目前,針對英特爾至強處理器的軟件優化已升級到深度學習框架中,并可用于PyTorch*、TensorFlow*、DeepSpeed*和其它AI庫的默認發行版。英特爾主導了torch.compile CPU后端的開發和優化,這是PyTorch 2.0的旗艦功能。與此同時,英特爾還提供英特爾PyTorch擴展包*(IntelExtension for PyTorch*),旨在PyTorch官方發行版之前,盡早、及時地為客戶提供英特爾CPU的優化。

第四代英特爾至強可擴展處理器擁有更高的內存容量,支持在單個插槽內實現適用于對話式AI和文本摘要應用的、低延遲的大語言模型執行。對于BF16和INT8,該結果展示了單個插槽內執行1個模型時的延遲。英特爾PyTorch擴展包*支持SmoothQuant,以確保INT8精度模型具有良好的準確度。

考慮到大語言模型應用需要以足夠快的速度生成token,以滿足讀者較快的閱讀速度,我們選擇token延遲,即生成每個token所需的時間作為主要的性能指標,并以快速人類讀者的閱讀速度(約為每個token 100毫秒)作為參考。如圖2、3所示,對于70億參數的Llama2 BF16模型和130億參數的Llama 2 INT8模型,第四代英特爾至強單插槽的延遲均低于100毫秒2

得益于更高的HBM2E帶寬,英特爾至強CPU Max系列為以上兩個模型提供了更低的延遲。而憑借英特爾AMX加速器,用戶可以通過更高的批量尺寸(batch size)來提高吞吐量。

wKgZomToEiKACI8YAAH9J10fRew832.png

圖2 基于英特爾至強可擴展處理器,70億參數和130億參數Llama 2模型(BFloat16)的推理性能

wKgZomToEiKAW4KxAAH4BE-DLCg438.png

圖3 基于英特爾至強可擴展處理器,70億參數和130億參數Llama 2模型(INT8)的推理性能

對于70億和130億參數的模型,每個第四代至強插槽可提供低于100毫秒的延遲。用戶可以分別在兩個插槽上同時運行兩個并行實例,從而獲得更高的吞吐量,并獨立地服務客戶端。亦或者,用戶可以通過英特爾PyTorch擴展包*和DeepSpeed* CPU,使用張量并行的方式在兩個第四代至強插槽上運行推理,從而進一步降低延遲或支持更大的模型。

關于在至強平臺上運行大語言模型和Llama 2,開發者可以點擊此處(https://intel.github.io/intel-extension-for-pytorch/llm/cpu/)了解更多詳細信息。第四代英特爾至強可擴展處理器的云實例可在AWS和Microsoft Azure上預覽,目前已在谷歌云平臺和阿里云全面上線。英特爾將持續在PyTorch*和DeepSpeed*進行軟件優化,以進一步加速Llama 2和其它大語言模型。

英特爾數據中心GPU Max系列

英特爾數據中心GPU Max系列提供并行計算、科學計算和適用于科學計算的AI加速。作為英特爾性能最為出色、密度最高的獨立顯卡,英特爾數據中心GPU Max系列產品中封裝超過1000億個晶體管,并包含多達128個Xe內核,Xe是英特爾GPU的計算構建模塊。

英特爾數據中心GPU Max系列旨在為AI和科學計算中使用的數據密集型計算模型提供突破性的性能,包括:

●408 MB基于獨立SRAM技術的L2緩存、64MB L1緩存以及高達128GB的高帶寬內存(HBM2E)。

●AI增強型的Xe英特爾矩陣擴展(英特爾XMX)搭載脈動陣列,在單臺設備中可實現矢量和矩陣功能。

英特爾Max系列產品統一支持oneAPI,并基于此實現通用、開放、基于標準的編程模型,釋放生產力和性能。英特爾oneAPI工具包括高級編譯器、庫、分析工具和代碼遷移工具,可使用SYCL輕松將CUDA代碼遷移到開放的C++

英特爾數據中心Max系列GPU通過當今框架的開源擴展來實現軟件支持和優化,例如面向PyTorch*的英特爾擴展、面向TensorFlow*的英特爾擴展和面向DeepSpeed*的英特爾擴展。通過將這些擴展與上游框架版本一起使用,用戶將能夠在機器學習工作流中實現快速整合。

我們在一個600瓦OAM形態的GPU上評估了Llama 2的70億參數模型和Llama 2的130億參數模型推理性能,這個GPU上封裝了兩個tile,而我們只使用其中一個tile來運行推理。圖4顯示,對于輸入長度為32到2000的token,英特爾數據中心GPU Max系列的一個tile可以為70億參數模型的推理提供低于20毫秒的單token延遲,130億參數模型的單token延遲為29.2-33.8毫秒3。因為該GPU上封裝了兩個tile,用戶可以同時并行運行兩個獨立的實例,每個tile上運行一個,以獲得更高的吞吐量并獨立地服務客戶端。

wKgZomToEiKAd_RoAAG1kNPZfKk365.png

圖4英特爾數據中心GPUMax1550上的Llama2的70億和130億參數模型的推理性能

關于在英特爾GPU平臺上運行大語言模型和Llama 2,可以點擊此處(https://intel.github.io/intel-extension-for-pytorch/llm/xpu/)獲取詳細信息。目前英特爾開發者云平臺上已發布英特爾GPU Max云實例測試版。

英特爾平臺上的大語言模型微調

除了推理之外,英特爾一直在積極地推進微調加速,通過向Hugging Face Transformers、PEFT、Accelerate和Optimum庫提供優化,并在面向Transformers的英特爾擴展中提供參考工作流。這些工作流支持在相關英特爾平臺上高效地部署典型的大語言模型任務,如文本生成、代碼生成、完成和摘要。

總結

上述內容介紹了在英特爾AI硬件產品組合上運行Llama 2的70億和130億參數模型推理性能的初始評估,包括Habana Gaudi2深度學習加速器、第四代英特爾至強可擴展處理器、英特爾至強CPU Max系列和英特爾數據中心GPU Max系列。我們將繼續通過軟件發布提供優化,后續會再分享更多關于大語言模型和更大的Llama 2模型的評估。

參考資料

Intel / intel-extension-for-pytorch:一個用于擴展官方PyTorch的PyTorch軟件包,可以輕松地獲取英特爾平臺的性能(github.com)

使用英特爾神經壓縮器進行模型壓縮:huggingface/optimum-habana:在Habana Gaudi處理器(HPU)上輕松地極速訓練Transformers(github.com)

面向英特爾數據中心GPU Max系列的開發工具

Meta Llama2論文:https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/

Meta Llama2博客:https://ai.meta.com/llama/

產品和性能信息

1HabanaGaudi2深度學習加速器:所有測量使用了一臺HLS2 Gaudi2服務器上的Habana SynapseAI 1.10版和optimum-habana 1.6版,該服務器具有八個Habana Gaudi2 HL-225H Mezzanine卡和兩個英特爾至強白金8380 CPU@2.30GHz以及1TB系統內存。2023年7月進行測量。

2第四代英特爾至強可擴展處理器

·第四代英特爾至強8480:第四代英特爾至強白金8480+2插槽系統,112核/224線程,啟用睿頻,啟用超線程,內存:16x32GB DDR5 4800MT/s,存儲:953.9GB;操作系統:CentOS Stream 8;內核:5.15.0-spr.bkc.pc.16.4.24.x86_64;批處理大小:1;在1個插槽上測量:1;PyTorch nightly build0711;IntelExtensions for PyTorch* tag v2.1.0.dev+cpu.llm;模型:Llama 2 70億和Llama 2 130億參數;數據集LAMBADA;令牌長度:32/128/1024/2016(in),32(out);Beam Width 4;精度:BF16和INT8;英特爾在2023年7月12日測試。

·英特爾至強Max 9480:英特爾至強Max 9480 2插槽系統,112核/224線程,啟用睿頻,啟用超線程,內存:16x64GB DDR5 4800MT/s;8x16GB HBM2 3200 MT/s,存儲:1.8TB;操作系統:CentOS Stream 8;內核:5.19.0-0812.intel_next.1.x86_64+server;批處理大小:1;在1個插槽上測量;PyTorch nightly build0711;IntelExtensions for PyTorch* llm_feature_branch;模型:Llama 2 70億和Llama 2 130億參數,數據集LAMBADA;令牌長度:32/128/1024/2016(in),32(out);Beam Width 4;精度:BF16和INT8;英特爾在2023年7月12日測試。

3英特爾數據中心GPU Max系列:1節點,2個英特爾至強白金8480+,56核,啟用超線程,啟用睿頻,NUMA 2,總內存1024GB(16x64GB DDR5 4800 MT/s [4800 MT/s]),BIOS:SE5C7411.86B.9525.D19.2303151347,微代碼0x2b0001b0,1個用于10GBASE-T的以太網控制器X710,1個1.8T WDC WDS200T2B0B,1個931.5G英特爾SSDPELKX010T8,Ubuntu 22.04.2 LTS,5.15.0-76-generic,4個英特爾數據中心GPU Max 1550(僅使用單個OAM GPU卡的一個區塊測量),IFWI PVC 2_1.23166,agama驅動程序:agama-ci-devel-627.7,英特爾oneAPI基礎工具包2023.1,PyTorch* 2.0.1 + IntelExtension for PyTorch* v2.0.110+xpu(dev/LLM分支),AMC固件版本:6.5.0.0,模型:Meta AI Llama 2 70億和Llama 2 130億參數,數據集LAMBADA;令牌長度:32/128/1024/2016(in),32(out);Greedy搜索;精度FP16;英特爾在2023年7月7日測試。

4性能因用途、配置和其它因素而異。更多信息請見www.Intel.com/PerformanceIndex。


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 英特爾
    +關注

    關注

    61

    文章

    9949

    瀏覽量

    171693
  • cpu
    cpu
    +關注

    關注

    68

    文章

    10854

    瀏覽量

    211584

原文標題:英特爾通過軟硬件為LIama 2大模型提供加速,持續發力推動AI發展

文章出處:【微信號:英特爾中國,微信公眾號:英特爾中國】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    使用英特爾AI PCYOLO模型訓練加速

    之后,情況有了新的變化,PyTorch2.5正式開始支持英特爾顯卡,也就是說,此后我們能夠借助英特爾 銳炫 顯卡來進行模型訓練了。
    的頭像 發表于 12-09 16:14 ?240次閱讀
    使用<b class='flag-5'>英特爾</b><b class='flag-5'>AI</b> PC<b class='flag-5'>為</b>YOLO<b class='flag-5'>模型</b>訓練<b class='flag-5'>加速</b>

    英特爾發布全新企業AI一體化方案

    近日,英特爾正式推出了全新的企業AI一體化方案。該方案以英特爾至強處理器和英特爾Gaudi 2D AI
    的頭像 發表于 12-03 11:20 ?213次閱讀

    英特爾助力百度智能云千帆大模型平臺加速LLM推理

    “大模型在各行業的廣泛應用驅動了新一輪產業革命,也凸顯了在AI算力方面的瓶頸。通過攜手英特爾釋放英特爾 至強 可擴展處理器的算力潛力,我們
    的頭像 發表于 11-25 16:59 ?405次閱讀
    <b class='flag-5'>英特爾</b>助力百度智能云千帆大<b class='flag-5'>模型</b>平臺<b class='flag-5'>加速</b>LLM推理

    英特爾攜手百度智能云加速AI落地

    在2024年9月25日-26日舉辦的2024百度云智大會上,作為大會的聯合主辦方,英特爾帶來了AI全棧軟硬件方案,深入講解了如何基于英特爾 至強 處理器和新一代極具性價比的
    的頭像 發表于 10-12 10:08 ?470次閱讀

    英特爾IT的發展現狀和創新動向

    AI模型的爆發,客觀上給IT的發展帶來了巨大的機會。作為把IT發展上升為戰略高度的英特爾,自然在推動
    的頭像 發表于 08-16 15:22 ?551次閱讀

    英特爾軟硬件構建模塊如何幫助優化RAG應用

    軟硬件構建模塊如何幫助優化RAG應用,在簡化部署和支持擴展的同時,增強其上下文感知能力和實時響應性能。 1 您的應用量身定制GenAI ChatGPT的面世改變了AI發展格局。企
    的頭像 發表于 07-24 15:12 ?410次閱讀
    <b class='flag-5'>英特爾</b><b class='flag-5'>軟硬件</b>構建模塊如何幫助優化RAG應用

    英特爾以生成式AI RAG解決方案,巴黎奧運健兒提供便捷體驗

    英特爾通過開放、易獲取的AI系統和生態協作,以創新的方式運動員提供支持,并助力企業客戶創造更多可能。
    的頭像 發表于 07-19 19:43 ?1727次閱讀
    <b class='flag-5'>英特爾</b>以生成式<b class='flag-5'>AI</b> RAG解決方案,<b class='flag-5'>為</b>巴黎奧運健兒<b class='flag-5'>提供</b>便捷體驗

    英特爾CEO:AI時代英特爾動力不減

    英特爾CEO帕特·基辛格堅信,在AI技術的飛速發展之下,英特爾的處理器仍能保持其核心地位。基辛格公開表示,摩爾定律仍然有效,而英特爾在處理器
    的頭像 發表于 06-06 10:04 ?419次閱讀

    英特爾助力京東云用CPU加速AI推理,以大模型構建數智化供應鏈

    英特爾助力京東云用CPU加速AI推理,以大模型構建數智化供應鏈
    的頭像 發表于 05-27 11:50 ?529次閱讀
    <b class='flag-5'>英特爾</b>助力京東云用CPU<b class='flag-5'>加速</b><b class='flag-5'>AI</b>推理,以大<b class='flag-5'>模型</b>構建數智化供應鏈

    Intel Vision 2024大會: 英特爾發布全新軟硬件平臺,全速助力企業推進AI創新

    的下一代英特爾?至強?6處理器的全新品牌。 ?推出英特爾?Gaudi 3 AI加速器,其推理能力和能效均有顯著提高。多家OEM客戶將采用,
    的頭像 發表于 04-12 14:52 ?532次閱讀
    Intel Vision 2024大會: <b class='flag-5'>英特爾</b>發布全新<b class='flag-5'>軟硬件</b>平臺,全速助力企業推進<b class='flag-5'>AI</b>創新

    英特爾升級AI PC加速計劃

    近日,英特爾公司正式推出“AI PC加速計劃”,旨在通過兩大新舉措進一步推動人工智能技術在個人電腦領域的應用與
    的頭像 發表于 03-28 11:46 ?673次閱讀

    英特爾宣布AI PC加速計劃新增兩項AI舉措

    首先,“AI PC 開發者計劃”面向軟件研發人員和獨立軟件開發商,他們提供便捷的開發環境,助力加速大規模運用新型 AI技術。此計劃包含一系
    的頭像 發表于 03-27 16:03 ?380次閱讀

    英特爾銳炫A系列顯卡客戶提供了強大的性能和靈活性

    在當今快速發展的邊緣計算和人工智能領域,英特爾憑借其創新的軟硬件解決方案,客戶提供了強大的性能和靈活性。其中,推出的
    的頭像 發表于 03-22 15:17 ?517次閱讀
    <b class='flag-5'>英特爾</b>銳炫A系列顯卡<b class='flag-5'>為</b>客戶<b class='flag-5'>提供</b>了強大的性能和靈活性

    英特爾加速推動AI產業應用型人才培養

    近日,英特爾在武漢成功舉辦了“AI賦能”武漢工程大學產教融合研討會,該活動標志著英特爾推動人工智能產業應用型人才培養方面邁出了重要的一步。此次研討會匯聚了院校、伙伴、行業出版機構四方
    的頭像 發表于 03-16 09:37 ?645次閱讀

    英特爾發布全新邊緣平臺,充分滿足企業AI部署需求

    相MWC,就立即打出了一套軟硬件組合拳,旨在滿足5G和邊緣部署對可持續發展AI的需求。 硬件領域更新 我們從硬件看起,這里有兩個值得關注的
    的頭像 發表于 03-01 18:26 ?980次閱讀
    主站蜘蛛池模板: 精品久久久爽爽久久久AV| 国产精品爆乳尤物99精品| 国产白色视频在线观看w| 国产精品一区二区三区四区五区| 99爱在线精品视频免费观看9| wwwav在线| 国产在线播放精品视频| 男女又黄又刺激B片免费网站| 男人边吃奶边摸边做刺激情话| 色爰情人网站| 2020美女视频黄频大全视频| 妇少水多18P蜜泬17P亚洲乱| 久久精品免费看网站| 亚洲国产av| 草莓视频在线看免费高清观看| 国语自产偷成人精品视频| 欧美亚洲曰韩一本道| 亚洲野狼综合网站| 国产高清精品国语特黄A片| 美女诱点第6季| 亚洲午夜久久久精品电影院| 父亲猜女儿在线观看| 欧美日韩视频一区二区三区| 在线日韩欧美一区二区三区| 国外成人电台| 亚洲AV无码久久流水呻蜜桃久色 | 午夜看片a福利在线观看| china野外18:19| 两个客户一起吃我的奶| 亚洲一区乱码电影在线| 国产线精品视频在线观看| 色人格影院第四色| 超碰97av 在线人人操| 欧美夜夜噜2017最新| 97人人看碰人免费公开视频| 久久伊人在| 97人妻中文字幕免费视频| 免费观看国产视频| a级成人免费毛片完整版| 欧美 日韩 亚洲 在线| YY8848高清私人影院|