色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

OBC PFC車規功率器件結溫波動與功率循環壽命分析

英飛凌工業半導體 ? 2023-11-03 08:14 ? 次閱讀

應用背景

隨著新能源汽車(xEV)在乘用車滲透率的逐步提升,車載充電機(OBC)作為電網與車載電池之間的單向充電或雙向補能的車載電源設備,也得到了非常廣泛的應用。相比車載主驅電控逆變器, 電源類OBC產品復雜度高,如何實現其高功率密度、高可靠性、高效率、高性價比等核心指標的優化與平衡,一直是OBC不斷技術迭代與產品革新的方向。

在上述OBC與可靠性的背景下,針對車規功率器件在PFC電路中的結溫(Tvj)波動與功率循環(PC)壽命的熱點應用話題,我們將以系列微信文章的形式,結合英飛凌最新的技術與產品,與大家一起分享。

功率器件可靠性基礎

功率器件的結溫(Tvj)波動與功率循環(PC)壽命,一直是工業界與學術界討論的重點。在軌道牽引、風力發電(發電側低頻)、電梯變頻、和電動汽車主驅等應用中,相關的研究已持續了幾十年,相關的標準與測試方法也趨于成熟。

功率循環(PC)壽命的本質,其實是功率器件內的不同封裝材料,在溫度變化時,由于自身CTE不匹配而產生的彼此機械應力與疲勞損傷,進而產生材料間的分離和功率器件電氣失效等現象,如綁定線與DCB分離、綁定線與芯片上表面分開、芯片與DCB焊料分層、DCB與銅基板之間焊料退化等等,如圖1。


feb6a2b0-79dd-11ee-9788-92fbcf53809c.png

圖1:功率模塊功率循環PC壽命對應的可能失效位置示意圖

因此,功率器件自身的功率循環(PC)能力,和實際加載的溫度變化大小,共同決定了器件在應用中功率循環(PC)壽命的多少。

不同的芯片和封裝材料及其工藝,對功率器件的功率循環(PC)能力有著非常顯著的影響。為了表征,功率器件的功率循環(PC)能力,器件廠家一般會提供相應產品的PC曲線或擬合公式,便于計算不同工況下的器件PC壽命。

因此,英飛凌有一篇專門的應用筆記,介紹了如何利用PC曲線進行PC壽命(次數)計算的基本思路,如圖2。


fec3be28-79dd-11ee-9788-92fbcf53809c.png

圖2:英飛凌關于PC和TC的AN


以上述應用筆記中IGBT模塊的PC曲線及其PC壽命計算為例,如圖3所示,典型IGBT功率模塊的PC曲線,及其Ton時間的折算曲線,通過實際應用中IGBT的結溫Tvj波動(Tvjmax和ΔTvj),再根據Tvj波動周期進行Ton時間的折算,就可以得到單點工況的PC次數。復雜工況可以通過加權平均或者雨流法等復雜算法,算出總的PC次數及其對應的時間,即所謂的PC壽命。計算的思路比較簡單,如果沒有PC曲線,有對應的PC擬合公式,同樣可以進行上述PC壽命計算。

fec81a0e-79dd-11ee-9788-92fbcf53809c.png

圖3:典型IGBT模塊的PC曲線和Ton折算曲線

此處,需要特別說明兩點:一是,不同的PC測試方法,會得到不同的PC測試結果曲線,而不同器件廠家的PC測試方法可能是不同的(英飛凌的測試方法是業內最嚴酷的,如圖4)。因此,以車規模塊的AQG324可靠性標準為例,詳細規定了PC的測試方法(統一測試條件),以公平地對比不同器件的PC能力表現。二是,同樣的器件,失效概率(Failure Probability)不同,則PC曲線也不同。英飛凌一般按默認5%(業內標桿),而有些器件廠家可能是10%。


fedb7efa-79dd-11ee-9788-92fbcf53809c.png

圖4:不同的PC測試方法對PC測試結果的影響

以上,我們介紹了功率器件(IGBT模塊)可靠性的基礎。針對OBC應用中的單管(Si或SiC)器件,上述思路同樣適應,只是相應的器件PC曲線稍有差異,再增加一些針對單管特性的額外參數折算等而已,相關細節,我們會在下一篇的具體案例中分析與討論。

OBC應用與PFC拓撲

車載OBC產品復雜度高,在OBC產品設計應用中,要實現其高功率密度、高可靠性、高效率、高性價比等核心指標的優化與平衡。為了滿足電網AC側輸入功率因素和諧波的要求,和DCDC的寬電壓/負載范圍,通常OBC采用一級獨立的功率因素矯正(PFC)電路,典型的車載OBC系統架構如圖5所示。PFC級通過矯正輸入AC電流,保持和輸入電壓同相位的交流正弦波,在實現高功率因素的同時,功率器件流過同頻率的脈動電流,功率損耗呈現脈動形式,帶來比較大的結溫Tvj波動(ΔTvj)。如上節所述,功率器件的結溫(Tvj)波動與功率循環(PC)壽命密切相關,設計車載OBC產品,評估功率器件PC壽命,不可避免需要分析功率器件的結溫波動帶來的影響,這對車載OBC的長期可靠性評估尤為重要,這個話題也得到了業界越來越多的關注和重視。


fee75ee6-79dd-11ee-9788-92fbcf53809c.png

圖5:OBC產品結構示意圖


目前主流的OBC拓撲,一般分為非隔離AC/DC的PFC(如單/雙向圖騰柱PFC,或兩電平B6等)和隔離DC/DC的諧振電路(如LLC, CLLC, DAB等)兩部分。按PFC接入電網的制式(單相或三相或多相兼容)、電池能量單向或雙向、電池電壓400V或800V,結合系統性能與成本指標等要求,具體的拓撲方案及器件選型都會有所不同。

以單相功率6.6kW的OBC 為例,下圖是PFC的幾種常見拓撲組合,如圖6所示。

在單相圖騰柱PFC的快管位置:既有兩路IGBT單管交錯,也有單路SiC MOSFET單管,或是單路混合型SiC單管(Si/IGBT+SiC/SBD)等,基于不同的功率器件特性,常見的開關頻率fsw從40kHz ~ 100kHz不等。

在單相圖騰柱PFC的慢管位置:有單向充電的二極管,也有V2X雙向需求的IGBT單管或者Si MOSFET單管方案。

fef258b4-79dd-11ee-9788-92fbcf53809c.png

圖6:單相6.6kW OBC PFC常見拓撲組合

如圖7,在單/三相電網兼容的11kW OBC PFC中,基本以1200V SiC MOEFET單管的方案為主,在三相電網充放電時,以三相全橋B6拓撲運行,在單相電網充放電或者V2L時,可選其中一組橋臂作為慢管工作,其他橋臂交錯或并聯作為快管工作。

ff047ab2-79dd-11ee-9788-92fbcf53809c.png

圖7:單/三相兼容的11kW OBC PFC(3線/4線)常見拓撲

因此,在OBC應用中的PFC拓撲,主流就是單相圖騰柱PFC和三相全橋B6這兩種。

車規功率器件在單相圖騰柱拓撲中的損耗分析與Tvj波動

如圖8,基于PLECS軟件,我們搭建了簡單的單相圖騰柱電路,結合英飛凌官網的車規器件PLECS模型,進行了器件損耗與Tvj波動的仿真


以單相6.6kW充電工況為例,仿真Setup如下:


快管位置(T1/T2/D1/D2):Si/IGBT/F5/650V/50A + SiC/SBD/650V/30A


慢管位置(Q3/Q4):Si/CoolMOS/650V/50mOhm


開關頻率fsw:60kHz


電網電壓和電流:220Vac/32Arms


母線電壓:420Vdc


ff1442d0-79dd-11ee-9788-92fbcf53809c.png

圖8:單相6.6kW圖騰柱PFC示意圖


ff18280a-79dd-11ee-9788-92fbcf53809c.png

圖9:電網電壓(V)和電流(A)及其驅動信號(T1/T2為快管、Q3/Q4為慢管)


ff1f17aa-79dd-11ee-9788-92fbcf53809c.png

圖10:快管(T1/D1)和慢管(Q3)損耗(W)波形與電網電流(A)的波形


如圖9和圖10所示,快管T1/D1屬于高頻硬開關,慢管Q3只是工頻導通。所以,快管的器件功率損耗包含開關損耗和導通損耗,而慢管的器件功率損耗只有導通損耗。再加上器件自身的瞬態熱阻Zthjc,以及器件外圍的熱阻與水溫等,就可以得到功率器件的結溫Tvj波動,如圖11所示:

ff2bbe6a-79dd-11ee-9788-92fbcf53809c.png

圖11:快管(T1/D1)和慢管(Q3)的結溫Tvj(?C)波動和輸入電流Iin_ac(A)

由圖11,無論快管還是慢管,都存在50Hz的結溫Tvj波動。結合前面的仿真分析可知,快管位置T1/D1的損耗及結溫Tvj波動的影響因素,和慢管位置Q3的情況是不同的,如圖12所示:

快管T1(以IGBT為例)的結溫Tvj波動,相關的影響因素較多,包括PFC系統參數、器件自身特性(開關特性、導通特性、熱阻特性)、及其換流FWD特性等,即相同器件下的可調節的自由度或可優化的空間較大。

慢管Q3(以CoolMOS為例)的結溫Tvj波動,幾乎只與Rdson和熱阻Zthjc相關。

快管D1如果采用SiC/SBD,考慮到Erec很小,則情況與慢管Q3非常類似,也幾乎只與SiC/SBD電流規格和熱阻Zthjc相關。

ff364a74-79dd-11ee-9788-92fbcf53809c.png

圖12:快管(T1/D1)和慢管(Q3)的結溫Tvj波動的影響因素

總結


綜上所述,文章簡要回顧了功率器件的PC壽命可靠性、分析了OBC中PFC主流拓撲、和仿真了圖騰柱PFC的損耗和結溫Tvj波動。那么,在實際OBC應用中,如果結合英飛凌的車規產品,進行結溫Tvj波動的計算與PC壽命評估及其注意事項等,我們將在后續篇章中逐步深入與展開。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • PFC
    PFC
    +關注

    關注

    47

    文章

    974

    瀏覽量

    106154
  • 功率器件
    +關注

    關注

    41

    文章

    1773

    瀏覽量

    90494
  • OBC
    OBC
    +關注

    關注

    10

    文章

    160

    瀏覽量

    17843
收藏 人收藏

    評論

    相關推薦

    DOH新材料工藝封裝技術解決功率器件散熱問題

    DOH:DirectonHeatsink,熱沉。助力提升TEC、MOSFET、IPM、IGBT等功率器件性能提升,解決孔洞和裂紋問題提升產品良率及使用壽命。為綜合評估SiC功率模塊的液
    的頭像 發表于 12-24 06:41 ?153次閱讀
    DOH新材料工藝封裝技術解決<b class='flag-5'>功率</b><b class='flag-5'>器件</b>散熱問題

    PFC電源對工業設備的影響 PFC與無功功率的關系

    PFC電源對工業設備的影響 PFC電源,即帶有功率因數校正功能的電源,對工業設備具有顯著的影響。以下是對其影響的具體分析: 提高能效 : PFC
    的頭像 發表于 12-16 15:53 ?149次閱讀

    功率器件在多次循環雙脈沖測試中的應用

    環境下穩定工作,這對器件的耐久性和可靠性是一個巨大的挑戰。同時,隨著SiC等寬禁帶半導體材料的興起,功率器件的性能得到了顯著提升,但同時也帶來了新的測試需求。如何在保證測試效率的同時,準確評估這些先進
    的頭像 發表于 11-26 10:58 ?259次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b>在多次<b class='flag-5'>循環</b>雙脈沖測試中的應用

    功率模塊中的估算技術

    是判定IGBT是否處于安全運行的重要條件,IGBT的工作限制著控制器的最大輸出能力。如果IGBT過熱,可能會導致損壞,影響設備的性能、壽命
    的頭像 發表于 11-13 10:19 ?492次閱讀
    <b class='flag-5'>功率</b>模塊中的<b class='flag-5'>結</b><b class='flag-5'>溫</b>估算技術

    高壓柵極驅動器的功率損耗分析

    高頻率開關的MOSFET和IGBT柵極驅動器,可能會產生大量的耗散功率。因此,需要確認驅動器功率耗散和由此產生的,確保器件在可接受的溫度
    的頭像 發表于 11-11 17:21 ?343次閱讀
    高壓柵極驅動器的<b class='flag-5'>功率</b>損耗<b class='flag-5'>分析</b>

    功率半導體器件功率循環測試與控制策略

    功率循環測試是一種功率半導體器件的可靠性測試方法,被列為AEC-Q101與AQG-324等
    的頭像 發表于 10-09 18:11 ?402次閱讀
    <b class='flag-5'>功率</b>半導體<b class='flag-5'>器件</b><b class='flag-5'>功率</b><b class='flag-5'>循環</b>測試與控制策略

    功率器件功率循環測試原理詳解

    了爆發式的增長。與消費電子市場相比,功率半導體器件所面臨的挑戰更為嚴峻,因其需要在高工作
    的頭像 發表于 08-12 16:31 ?1155次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>功率</b><b class='flag-5'>循環</b>測試原理詳解

    級IGBT模組:成本背后的復雜系統解析

    級IGBT(Insulated Gate Bipolar Transistor,絕緣柵雙極型晶體管)模組作為新能源汽車中的核心功率半導體器件,其成本結構涉及多個方面。本文將從材料成
    的頭像 發表于 07-22 10:24 ?586次閱讀
    <b class='flag-5'>車</b><b class='flag-5'>規</b>級IGBT模組:成本背后的復雜系統解析

    功率器件的開關波形分析

    功率器件,特別是如功率MOSFET和IGBT等,在電力電子系統中扮演著至關重要的角色。它們的開關波形分析對于理解器件性能、優化系統設計以及確
    的頭像 發表于 07-19 14:08 ?864次閱讀

    熱管理:利用光纖傳感器監測

    (Tj)對于確定半導體器件功率循環能力至關重要。它是提取絕緣柵雙極型晶體管(IGBT)熱特性、闡述
    的頭像 發表于 07-12 11:55 ?287次閱讀
    熱管理:利用光纖傳感器監測<b class='flag-5'>結</b><b class='flag-5'>溫</b>

    級 | 功率半導體模塊封裝可靠性試驗-熱阻測試

    在因為功率器件相關原因所引起電子系統失效的原因中,有超過50%是因為溫度過高導致的熱失效。過高會導致電子系統性能降低、可靠性降低、壽命
    的頭像 發表于 07-05 10:22 ?4550次閱讀
    <b class='flag-5'>車</b><b class='flag-5'>規</b>級 | <b class='flag-5'>功率</b>半導體模塊封裝可靠性試驗-熱阻測試

    功率循環對IGBT 壽命的影響——準確估算功率器件壽命

    內容摘要供應商們正在努力提高絕緣柵雙極晶體管(IGBT)、Si和SiCMOSFET以及其他功率器件的最大功率水平和電流負載能力,并同時保持高質量a和可靠性。新技術隨著創新而紛紛涌現,例如改進了導熱性
    的頭像 發表于 04-26 08:35 ?1218次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>循環</b>對IGBT <b class='flag-5'>壽命</b>的影響——準確估算<b class='flag-5'>功率</b><b class='flag-5'>器件</b>的<b class='flag-5'>壽命</b>

    功率循環對IGBT壽命有何影響?如何準確估算功率器件壽命呢?

    運行過程中產生的高溫和高溫度梯度會引起機械應力,尤其是在具有不同熱膨脹系數的材料之間的接觸面上,這可能導致這些器件性能退化甚至完全失效。
    的頭像 發表于 04-24 14:23 ?1182次閱讀
    <b class='flag-5'>功率</b><b class='flag-5'>循環</b>對IGBT<b class='flag-5'>壽命</b>有何影響?如何準確估算<b class='flag-5'>功率</b><b class='flag-5'>器件</b>的<b class='flag-5'>壽命</b>呢?

    貝思科爾邀您參加ASPC2024亞太功率半導體器件及應用發展大會

    “ASPC2024亞太功率半導體器件及應用發展大會”將于2024年3月14~15日在嘉興召開,貝思科爾誠摯歡迎您參加本次大會。在汽車電動化、智能化技術應用的不斷發展,單車芯片價值
    的頭像 發表于 03-07 08:33 ?678次閱讀
    貝思科爾邀您參加ASPC2024亞太<b class='flag-5'>車</b><b class='flag-5'>規</b>級<b class='flag-5'>功率</b>半導體<b class='flag-5'>器件</b>及應用發展大會

    DOH新工藝技術助力提升功率器件性能及使用壽命

    DOH新工藝技術助力提升功率器件性能及使用壽命
    的頭像 發表于 01-11 10:00 ?636次閱讀
    DOH新工藝技術助力提升<b class='flag-5'>功率</b><b class='flag-5'>器件</b>性能及使用<b class='flag-5'>壽命</b>
    主站蜘蛛池模板: 怡春院国产精品视频| 巨爆乳中文字幕爆乳区| 亚洲AV蜜桃永久无码精品无码网| 黄桃AV无码免费一区二区三区| 最美女人体内射精一区二区| 色妞色视频一区二区三区四区| 久久99国产综合精品AV蜜桃| 超碰人人草在线视频| 伊人久久99热这里只有精品| 色欲午夜无码久久久久久| 啦啦啦影院视频在线看高清...| 国产成人综合高清在线观看| 6080伦理久久亚洲精品| 亚洲精品高清视频| 伸到同桌奶罩里捏她胸h| 欧美另类与牲交ZOZOZO| 久久国产加勒比精品无码| 国产免费看片| 国产 交换 丝雨 巅峰| BLACKED太粗太长| 37pao成人国产永久免费视频| 亚洲国产精品特色大片观看| 日韩性大片| 日本69xxxx| 女同志videos最新另| 绝色娇嫩美人妻老师| 国外色幼网| 国产精品99久久久久久WWW| 成 人 网 站免费观看| 刘梓晨啪啪啪| 91夫妻交友论坛| 忘忧草在线影院WWW日本动漫| 久久免费精彩视频| 菠萝视频高清版在线观看| 亚洲看片网站| 夜夜穞狠狠穞| 国产AV天堂一区二区三区| 内射少妇36P亚洲区| 精品日韩二区三区精品视频| 91麻豆精品国产一级| 伊人久久影院大香线蕉|