色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

一文讀懂自動駕駛視覺感知技術

智能汽車電子與軟件 ? 來源:全球汽貿網 ? 2023-11-13 17:12 ? 次閱讀

環境感知 是自動駕駛的第一環,是車輛和環境交互的紐帶。一個自動駕駛系統整體表現的好壞,很大程度上都取決于感知系統的好壞。目前,環境感知技術有兩大主流技術路線:

①以視覺為主導的多傳感器融合方案,典型代表是特斯拉

②以激光雷達為主導,其他傳感器為輔助的技術方案,典型代表如谷歌、百度等。

我們將圍繞著環境感知中關鍵的視覺感知算法進行介紹,其任務涵蓋范圍及其所屬技術領域如下圖所示。

10d241aa-8200-11ee-939d-92fbcf53809c.jpg

我們先從廣泛應用于自動駕駛的幾個任務出發介紹2D視覺感知算法,包括基于圖像或視頻的2D目標檢測和跟蹤,以及2D場景的語義分割。近些年,深度學習滲透到視覺感知的各個領域,取得不錯的成績,因此,我們梳理了一些經典的深度學習算法。

目標檢測

1.1 兩階段檢測

兩階段指的是實現檢測的方式有先后兩個過程,一是提取物體區域;二是對區域進行CNN分類識別;因此,“兩階段”又稱基于候選區域(Region proposal)的目標檢測。代表性算法有R-CNN系列(R-CNN、Fast R-CNN、Faster R-CNN)等。

Faster R-CNN是第一個端到端的檢測網絡。第一階段利用一個區域候選網絡(RPN)在特征圖的基礎上生成候選框,使用ROIPooling對齊候選特征的大小;第二階段用全連接層做細化分類和回歸。

這里提出了Anchor的思想,減少運算難度,提高速度。特征圖的每個位置會生成不同大小、長寬比的Anchor,用來作為物體框回歸的參考。Anchor的引入使得回歸任務只用處理相對較小的變化,因此網絡的學習會更加容易。下圖是Faster R-CNN的網絡結構圖。

10e93d74-8200-11ee-939d-92fbcf53809c.png

CascadeRCNN第一階段和Faster R-CNN完全一樣,第二階段使用多個RoiHead層進行級聯。后續的一些工作多是圍繞著上述網絡的一些改進或者前人工作的雜燴,罕有突破性提升。

1.2 單階段檢測

相較于兩階段算法,單階段算法只需一次提取特征即可實現目標檢測,其速度算法更快,一般精度稍微低一些。這類算法的開山之作是YOLO,隨后SSD、Retinanet依次對其進行了改進,提出YOLO的團隊將這些有助于提升性能的trick融入到YOLO算法中,后續又提出了4個改進版本YOLOv2~YOLOv5。

盡管預測準確率不如雙階段目標檢測算法,由于較快的運行速度,YOLO成為了工業界的主流。下圖是YOLOv3的網絡結構圖。

10f63858-8200-11ee-939d-92fbcf53809c.jpg

1.3 Anchor-free檢測(無Anchor檢測)

這類方法一般是將物體表示為一些關鍵點,CNN被用來回歸這些關鍵點的位置。關鍵點可以是物體框的中心點(CenterNet)、角點(CornerNet)或者代表點(RepPoints)。CenterNet將目標檢測問題轉換成中心點預測問題,即用目標的中心點來表示該目標,并通過預測目標中心點的偏移量與寬高來獲取目標的矩形框。

Heatmap表示分類信息,每一個類別將會產生一個單獨的Heatmap圖。對于每張Heatmap圖而言,當某個坐標處包含目標的中心點時,則會在該目標處產生一個關鍵點,我們利用高斯圓來表示整個關鍵點,下圖展示了具體的細節。

1101ab2a-8200-11ee-939d-92fbcf53809c.png

RepPoints提出將物體表示為一個代表性點集,并且通過可變形卷積來適應物體的形狀變化。點集最后被轉換為物體框,用于計算與手工標注的差異。

1.4 Transformer檢測

無論是單階段還是兩階段目標檢測,無論采用Anchor與否,都沒有很好地利用到注意力機制。針對這種情況,Relation Net和DETR利用Transformer將注意力機制引入到目標檢測領域。Relation Net利用Transformer對不同目標之間的關系建模,在特征之中融入了關系信息,實現了特征增強。

DETR則是基于Transformer提出了全新的目標檢測架構,開啟了目標檢測的新時代,下圖是DETR的算法流程,先采用CNN提取圖像特征,然后用Transformer對全局的空間關系進行建模,最后得到的輸出通過二分圖匹配算法與手工標注進行匹配。

1121fe52-8200-11ee-939d-92fbcf53809c.jpg

下表中的準確度采用MSCOCO數據庫上的mAP作為指標,而速度則采用FPS來衡量,對比了上述部分算法,由于網絡的結構設計中存在很多不同的選擇(比如不同的輸入大小,不同的Backbone網絡等),各個算法的實現硬件平臺也不同,因此準確率和速度并不完全可比,這里只列出來一個粗略的結果供大家參考。

11298ffa-8200-11ee-939d-92fbcf53809c.jpg

目標跟蹤

在自動駕駛應用中,輸入的是視頻數據,需要關注的目標有很多,比如車輛,行人,自行車等等。因此,這是一個典型的多物體跟蹤任務(MOT)。對于MOT任務來說,目前最流行的框架是Tracking-by-Detection,其流程如下:

①由目標檢測器在單幀圖像上得到目標框輸出;

②提取每個檢測目標的特征,通常包括視覺特征和運動特征;

③根據特征計算來自相鄰幀的目標檢測之間的相似度,以判斷其來自同一個目標的概率;

④將相鄰幀的目標檢測進行匹配,給來自同一個目標的物體分配相同的ID。

深度學習在以上這四個步驟中都有應用,但是以前兩個步驟為主。在步驟1中,深度學習的應用主要在于提供高質量的目標檢測器,因此一般都選擇準確率較高的方法。SORT是基于Faster R-CNN的目標檢測方法,并利用卡爾曼濾波算法+匈牙利算法,極大提高了多目標跟蹤的速度,同時達到了SOTA的準確率,也是在實際應用中使用較為廣泛的一個算法。

在步驟2中,深度學習的應用主要在于利用CNN提取物體的視覺特征。DeepSORT最大的特點是加入外觀信息,借用了ReID模塊來提取深度學習特征,減少了ID switch的次數。整體流程圖如下:

114683d0-8200-11ee-939d-92fbcf53809c.jpg

此外,還有一種框架Simultaneous Detection and Tracking。如代表性的CenterTrack,它起源于之前介紹過的單階段無Anchor的檢測算法CenterNet。與CenterNet相比,CenterTrack增加了前一幀的RGB圖像和物體中心Heatmap作為額外輸入,增加了一個Offset分支用來進行前后幀的Association。與多個階段的Tracking-by-Detection相比,CenterTrack將檢測和匹配階段用一個網絡來實現,提高了MOT的速度。

語義分割

在自動駕駛的車道線檢測和可行駛區域檢測任務中均用到了語義分割。代表性的算法有FCN、U-Net、DeepLab系列等。DeepLab使用擴張卷積和ASPP(Atrous Spatial Pyramid Pooling)結構,對輸入圖像進行多尺度處理。最后采用傳統語義分割方法中常用的條件隨機場(CRF)來優化分割結果。下圖是DeepLab v3+的網絡結構。

1166ff8e-8200-11ee-939d-92fbcf53809c.jpg

近些年的STDC算法采用了類似FCN算法的結構,去掉了U-Net算法復雜的decoder結構。但同時在網絡下采樣的過程中,利用ARM模塊不斷地去融合來自不同層特征圖的信息,因此也避免了FCN算法只考慮單個像素關系的缺點。

可以說,STDC算法很好的做到了速度與精度的平衡,其可以滿足自動駕駛系統實時性的要求。算法流程如下圖所示。

117bfae2-8200-11ee-939d-92fbcf53809c.jpg

單目3D感知

接來下我們將介紹自動駕駛中必不可少的3D場景感知。因為深度信息、目標三維尺寸等在2D感知中是無法獲得的,而這些信息才是自動駕駛系統對周圍環境作出正確判斷的關鍵。想得到3D信息,最直接的方法就是采用激光雷達(LiDAR)。

但是,LiDAR也有其缺點,比如成本較高,車規級產品量產困難,受天氣影響較大等等。因此,單純基于攝像頭的3D感知仍然是一個非常有意義和價值的研究方向,接下來我們梳理了一些基于單目和雙目的3D感知算法。

基于單攝像頭圖像來感知3D環境是一個不適定問題,但是可以通過幾何假設(比如像素位于地面)、先驗知識或者一些額外信息(比如深度估計)來輔助解決。本次將從實現自動駕駛的兩個基本任務(3D目標檢測和深度估計)出發進行相關算法介紹。

4.1 3D目標檢測

119d2b04-8200-11ee-939d-92fbcf53809c.jpg

表示轉換(偽激光雷達):視覺傳感器對周圍其他車輛等的檢測通常會遇到遮擋、無法度量距離等問題,可以將透視圖轉換成鳥瞰圖表示。這里介紹兩種變換方法。一是逆透視圖映射(IPM),它假定所有像素都在地面上,并且相機外參準確,此時可以采用Homography變換將圖像轉換到BEV,后續再采用基于YOLO網絡的方法檢測目標的接地框。

二是正交特征變換(OFT),利用ResNet-18提取透視圖圖像特征。然后,通過在投影的體素區域上累積基于圖像的特征來生成基于體素的特征。然后將體素特征沿垂直方向折疊以產生正交的地平面特征。

最后,用另一個類似于ResNet的自上而下的網絡進行3D目標檢測。這些方法只適應于車輛、行人這類貼地的目標。對于交通標志牌、紅綠燈這類非貼地目標來說,可以通過深度估計來生成偽點云,進而進行3D檢測。Pseudo-LiDAR先利用深度估計的結果生成點云,再直接應用基于激光雷達的3D目標檢測器生成3D目標框,其算法流程如下圖所示。

11aaaa54-8200-11ee-939d-92fbcf53809c.jpg

關鍵點和3D模型:待檢測目標如車輛、行人等其大小和形狀相對固定且已知,這些可以被用作估計目標3D信息的先驗知識。DeepMANTA是這個方向的開創性工作之一。

首先,采用一些目標檢測算法比如Faster RNN來得到2D目標框,同時也檢測目標的關鍵點。然后,將這些2D目標框和關鍵點與數據庫中的多種3D車輛CAD模型分別進行匹配,選擇相似度最高的模型作為3D目標檢測的輸出。MonoGRNet則提出將單目3D目標檢測分成四個步驟:2D目標檢測、實例級深度估計、投影3D中心估計、局部角點回歸,算法流程如下圖所示。這類方法都假設目標有相對固定的形狀模型,對于車輛來說一般是滿足的,對于行人來說就相對困難一些。

11b5fba2-8200-11ee-939d-92fbcf53809c.jpg

2D/3D幾何約束:對3D中心和粗略實例深度的投影進行回歸,并使用這二者估算粗略的3D位置。開創性的工作是Deep3DBox,首先用2D目標框內的圖像特征來估計目標大小和朝向。

然后,通過一個2D/3D的幾何約束來求解中心點3D位置。這個約束就是3D目標框在圖像上的投影是被2D目標框緊密包圍的,即2D目標框的每條邊上都至少能找到一個3D目標框的角點。通過之前已經預測的大小和朝向,再配合上相機的標定參數,可以求解出中心點的3D位置。

2D和3D目標框之間的幾何約束如下圖所示。Shift R-CNN在Deep3DBox的基礎上將之前得到的2D目標框、3D目標框以及相機參數合并起來作為輸入,采用全連接網絡預測更為精確的3D位置。

11c41494-8200-11ee-939d-92fbcf53809c.jpg

直接生成3DBox:這類方法從稠密的3D目標候選框出發,通過2D圖像上的特征對所有的候選框進行評分,評分高的候選框即是最終的輸出。有些類似目標檢測中傳統的滑動窗口方法。代表性的Mono3D算法首先基于目標先驗位置(z坐標位于地面)和大小來生成稠密的3D候選框。

這些3D候選框投影到圖像坐標后,通過綜合2D圖像上的特征對其進行評分,再通過CNN再進行二輪評分得到最終的3D目標框。M3D-RPN是一種基于Anchor的方法,定義了2D和3D的Anchor。2D Anchor通過圖像上稠密采樣得到,3D Anchor是通過訓練集數據的先驗知識(如目標實際大小的均值)確定的。

M3D-RPN還同時采用了標準卷積和Depth-Aware卷積。前者具有空間不變性,后者將圖像的行(Y坐標)分成多個組,每個組對應不同的場景深度,采用不同的卷積核來處理。

上述這些稠密采樣方法計算量非常大。SS3D則采用更為高效的單階段檢測,包括用于輸出圖像中每個相關目標的冗余表示以及相應的不確定性估計的CNN,以及3D邊框優化器。FCOS3D也是一個單階段的檢測方法,回歸目標額外增加了一個由3D目標框中心投影到2D圖像得到的2.5D中心(X,Y,Depth)。

4.2 深度估計

不管是上述的3D目標檢測還是自動駕駛感知的另一項重要任務——語義分割,從2D擴展到3D,都或多或少得應用到了稀疏或稠密的深度信息。

單目深度估計的重要性不言而喻,其輸入是一張圖像,輸出是相同大小的一張由每個像素對應的場景深度值組成的圖像。輸入也可以是視頻序列,利用相機或者物體運動帶來的額外信息來提高深度估計的準確度。

相比于監督學習,單目深度估計的無監督方法無需構建極具挑戰性的真值數據集,實現難度更小。單目深度估計的無監督方法可分為基于單目視頻序列和基于同步立體圖像對兩種。

前者是建立在運動相機和靜止場景的假設之上的。在后者的方法中,Garg等人首次嘗試使用同一時刻立體校正后的雙目圖像對進行圖像重建,左右視圖的位姿關系通過雙目標定得到,獲得了較為理想的效果。

在此基礎上,Godard等人用左右一致性約束進一步地提升了精度,但是,在逐層下采樣提取高級特征來增大感受野的同時,特征分辨率也在不斷下降,粒度不斷丟失,影響了深度的細節處理效果和邊界清晰度。

為緩解這一問題,Godard等人引入了全分辨率多尺度的損失,有效減少了低紋理區域的黑洞和紋理復制帶來的偽影。但是,這對精度的提升效果仍是有限的。

最近,一些基于Transformer的模型層出不窮,旨于獲得全階段的全局感受野,這也非常適用于密集的深度估計任務。有監督的DPT中就提出采用Transformer和多尺度結構來同時保證預測的局部精確性和全局一致性,下圖是網絡結構圖。

11d0ae52-8200-11ee-939d-92fbcf53809c.jpg

雙目3D感知

雙目視覺可以解決透視變換帶來的歧義性,因此從理論上來說可以提高3D感知的準確度。但是雙目系統在硬件和軟件上要求都比較高。硬件上來說需要兩個精確配準的攝像頭,而且需要保證在車輛運行過程中始終保持配準的正確性。

軟件上來說算法需要同時處理來自兩個攝像頭的數據,計算復雜度較高,算法的實時性難以保證。與單目相比,雙目的工作相對較少。接下來也同樣從3D目標檢測和深度估計兩方面進行簡單介紹。

5.1 3D目標檢測

3DOP是一個兩階段的檢測方法,是Fast R-CNN方法在3D領域的拓展。首先利用雙目圖像生成深度圖,將深度圖轉化為點云后再將其量化為網格數據結構,再以此為輸入來生成3D目標的候選框。

與之前介紹的Pseudo-LiDAR類似,都是將稠密的深度圖(來自單目、雙目甚至低線數LiDAR)轉換為點云,然后再應用點云目標檢測領域的算法。DSGN利用立體匹配構建平面掃描體,并將其轉換成3D幾何體,以便編碼3D幾何形狀和語義信息,是一個端到端的框架,可提取用于立體匹配的像素級特征和用于目標識別的高級特征,并且能同時估計場景深度和檢測3D目標。

Stereo R-CNN擴展了 Faster R-CNN 用于立體輸入,以同時檢測和關聯左右視圖中的目標。在RPN之后增加額外的分支來預測稀疏的關鍵點、視點和目標尺寸,并結合左右視圖中的2D邊界框來計算粗略的3D目標邊界框。

然后,通過使用左右感興趣區域的基于區域的光度對齊來恢復準確的3D邊界框,下圖是它的網絡結構。

11efd94e-8200-11ee-939d-92fbcf53809c.jpg

5.2 深度估計

雙目深度估計的原理很簡單,就是根據左右視圖上同一個3D點之間的像素距離d(假設兩個相機保持同一高度,因此只考慮水平方向的距離)即視差,相機的焦距f,以及兩個相機之間的距離B(基線長度),來估計3D點的深度,公式如下,估計出視差就可以計算出深度。那么,需要做的就是為每個像素點在另一張圖像上找出與之匹配的點。

11fae032-8200-11ee-939d-92fbcf53809c.png

對于每一個可能的d,都可以計算每個像素點處的匹配誤差,因此就得到了一個三維的誤差數據Cost Volume。通過Cost Volume,我們可以很容易得到每個像素處的視差(對應最小匹配誤差的d),從而得到深度值。

MC-CNN用一個卷積神經網絡來預測兩個圖像塊的匹配程度,并用它來計算立體匹配成本。通過基于交叉的成本匯總和半全局匹配來細化成本,然后進行左右一致性檢查以消除被遮擋區域中的錯誤。

PSMNet提出了一個不需要任何后處理的立體匹配的端到端學習框架,引入金字塔池模塊,將全局上下文信息納入圖像特征,并提供了一個堆疊沙漏3D CNN進一步強化全局信息。下圖是其網絡結構。

1207d206-8200-11ee-939d-92fbcf53809c.jpg

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2551

    文章

    51163

    瀏覽量

    754120
  • 自動駕駛
    +關注

    關注

    784

    文章

    13838

    瀏覽量

    166525

原文標題:一文讀懂自動駕駛視覺感知技術

文章出處:【微信號:智能汽車電子與軟件,微信公眾號:智能汽車電子與軟件】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    馬斯克重申:純視覺自動駕駛的未來

    近日,特斯拉始終堅持其獨特的純視覺感知系統。這系統摒棄了傳統的毫米波雷達,完全依賴于攝像頭與先進的人工神經網絡,以實現自動駕駛的功能。 特斯拉CEO埃隆·馬斯克近期再次就
    的頭像 發表于 12-04 14:09 ?447次閱讀

    聊聊自動駕駛測試技術的挑戰與創新

    隨著自動駕駛技術的飛速發展,自動駕駛測試的重要性也日益凸顯。自動駕駛測試不僅需要驗證車輛的感知、決策、控制模塊的獨立性能,還需確保系統在復雜
    的頭像 發表于 12-03 15:56 ?203次閱讀
    <b class='flag-5'>一</b><b class='flag-5'>文</b>聊聊<b class='flag-5'>自動駕駛</b>測試<b class='flag-5'>技術</b>的挑戰與創新

    標貝科技:自動駕駛中的數據標注類別分享

    自動駕駛訓練模型的成熟和穩定離不開感知技術的成熟和穩定,訓練自動駕駛感知模型需要使用大量準確真實的數據。據英特爾計算,L3+級
    的頭像 發表于 11-22 15:07 ?908次閱讀
    標貝科技:<b class='flag-5'>自動駕駛</b>中的數據標注類別分享

    標貝科技:自動駕駛中的數據標注類別分享

    自動駕駛訓練模型的成熟和穩定離不開感知技術的成熟和穩定,訓練自動駕駛感知模型需要使用大量準確真實的數據。據英特爾計算,L3+級
    的頭像 發表于 11-22 14:58 ?555次閱讀
    標貝科技:<b class='flag-5'>自動駕駛</b>中的數據標注類別分享

    MEMS技術自動駕駛汽車中的應用

    MEMS技術自動駕駛汽車中的應用主要體現在傳感器方面,這些傳感器為自動駕駛汽車提供了關鍵的環境感知和數據采集能力。以下是對MEMS技術
    的頭像 發表于 11-20 10:19 ?391次閱讀

    自動駕駛技術的典型應用 自動駕駛技術涉及到哪些技術

    自動駕駛技術的典型應用 自動駕駛技術種依賴計算機、無人駕駛設備以及各種傳感器,實現汽車自主行
    的頭像 發表于 10-18 17:31 ?831次閱讀

    激光雷達與純視覺方案,哪個才是自動駕駛最優選?

    主要分為兩大類:激光雷達與視覺感知。激光雷達因其能夠提供精確的距離和形狀信息,在自動駕駛技術早期的開發中被廣泛應用。然而,隨著計算機視覺
    的頭像 發表于 09-29 10:47 ?467次閱讀

    聊聊自動駕駛離不開的感知硬件

    自動駕駛飛速發展,繞不開感知、決策和控制決策的經典框架,而感知作為自動駕駛汽車“感官”的重要組成部分,決定了自動駕駛系統對環境的理解和反應能
    的頭像 發表于 08-23 10:18 ?522次閱讀

    FPGA在自動駕駛領域有哪些優勢?

    FPGA(Field-Programmable Gate Array,現場可編程門陣列)在自動駕駛領域具有顯著的優勢,這些優勢使得FPGA成為自動駕駛技術中不可或缺的部分。以下是FP
    發表于 07-29 17:11

    FPGA在自動駕駛領域有哪些應用?

    是FPGA在自動駕駛領域的主要應用: 感知算法加速 圖像處理:自動駕駛中需要通過攝像頭獲取并識別道路信息和行駛環境,這涉及到大量的圖像處理任務。FPGA在處理圖像上的運算速度快,可
    發表于 07-29 17:09

    自動駕駛識別技術有哪些

    自動駕駛的識別技術自動駕駛系統中的重要組成部分,它使車輛能夠感知并理解周圍環境,從而做出智能決策。自動駕駛識別
    的頭像 發表于 07-23 16:16 ?683次閱讀

    自動駕駛的傳感器技術介紹

    自動駕駛的傳感器技術自動駕駛系統的核心組成部分,它使車輛能夠感知并理解周圍環境,從而做出智能決策。以下是對自動駕駛傳感器
    的頭像 發表于 07-23 16:08 ?2292次閱讀

    深度學習在自動駕駛中的關鍵技術

    隨著人工智能技術的飛速發展,自動駕駛技術作為其中的重要分支,正逐漸走向成熟。在自動駕駛系統中,深度學習技術發揮著至關重要的作用。它通過模擬人
    的頭像 發表于 07-01 11:40 ?781次閱讀

    雷諾集團攜手遠知行推出自動駕駛小巴載人服務

    雷諾集團近日宣布與自動駕駛領軍企業遠知行(WeRide)達成深度合作,計劃大規模商業化部署L4級自動駕駛技術,并推出自動駕駛小巴載人服務。
    的頭像 發表于 05-16 09:36 ?397次閱讀

    未來已來,多傳感器融合感知自動駕駛破局的關鍵

    駕駛的關鍵的是具備人類的感知能力,多傳感器融合感知正是自動駕駛破局的關鍵。昱感微的雷視體多傳感器融合方案就好像
    發表于 04-11 10:26
    主站蜘蛛池模板: 校园纯肉H教室第一次| 国产99久久| WWW国产亚洲精品久久久日本| 国产精品久久久久永久免费看| 久久这里只有热精品18| 午夜性爽视频男人的天堂在线| 99re1久久热在线播放| 精品无码一区二区三区不卡 | 97在线看视频福利免费| 色多多旧版污污破解版| J午夜精品久久久久久毛片| 甜性涩爱下载| 成人在线高清不卡免费视频| 蜜柚视频高清在线| 伊人青青青| 后入到高潮免费观看| 污到湿的爽文免费阅读| 国产91综合| 在线播放免费人成毛片视频| 久久精品电影久久电影大全| 亚洲xxxx动漫| 国产强奷伦奷片| 亚洲爆乳少妇精品无码专区| 美女用手扒开粉嫩的屁股| 闺蜜扒开我尿口使劲揉| 在线观看插女生免费版| 色-情-伦-理一区二区三区| 高清不卡伦理电影在线观看| 日韩视频中文字幕精品偷拍| 菠萝菠萝蜜视频在线看1| 日本老人oldmantv乱| 成人亚洲视频在线观看| 在线观看成人免费| 挺进老师的紧窄小肉六电影完整版| 久久精品国产亚洲AV热无遮挡| 国产精品96久久久久久AV不卡| 亚洲国产中文在线视频| 久久精麻豆亚洲AV国产品| 国产精品一区二区制服丝袜 | 中文字幕蜜臀AV熟女人妻| 女人夜夜春|