作者:沈叢
隨著人工智能產(chǎn)業(yè)快速發(fā)展,各行各業(yè)對算力的需求激增,業(yè)內(nèi)亟需能滿足海量數(shù)據(jù)處理需求的全新的計算模式。
量子計算以其獨特的并行性、疊加性和糾纏性,被視為下一代海量數(shù)據(jù)處理的重要技術(shù)方向之一。其中,量子芯片作為實現(xiàn)量子計算的核心部件,是解決海量數(shù)據(jù)處理難題的關(guān)鍵所在。
量子芯片強在哪里?
量子芯片究竟強大在何處?
據(jù)了解,量子芯片是利用量子力學(xué)原理實現(xiàn)信息的存儲、處理和計算,其最核心的是量子比特。相比傳統(tǒng)的比特只能存儲0或1兩種狀態(tài),量子比特可以同時處于0和1這兩種狀態(tài)的疊加態(tài),這使得量子芯片能夠?qū)崿F(xiàn)并行計算和高效的信息處理。
量子芯片不僅能提供更高效的信息處理能力,還能突破傳統(tǒng)芯片存在的技術(shù)瓶頸。
首先,在量子芯片上執(zhí)行邏輯運算、存儲及處理信息時,信息的編碼、存儲和讀取都是利用量子疊加和量子糾纏來實現(xiàn)的。因此,在量子芯片上實現(xiàn)邏輯運算可以通過制備一對或多個處于糾纏態(tài)的量子比特來實現(xiàn),而在傳統(tǒng)芯片上則需要復(fù)雜的電路和算法才能實現(xiàn)。
其次,量子芯片還具有更高的容錯性和魯棒性。在傳統(tǒng)芯片上,一個比特的錯誤可能會導(dǎo)致整個計算過程的失敗,而在量子芯片上,一個比特的錯誤只會影響該比特所存儲的信息,不會對計算過程產(chǎn)生太大影響。
最后,在具備諸多優(yōu)勢的同時,量子芯片的制造并不復(fù)雜。量子芯片的工藝能夠與現(xiàn)有集成電路工藝兼容,因此可以借鑒現(xiàn)有比較成熟的集成電路工藝體系,將其遷移到量子芯片工藝后再做一些改動,便可直接進行生產(chǎn),能夠節(jié)省前期研發(fā)時間成本。
因此,量子芯片被視為一種具有重要潛力的芯片制造技術(shù),可以解決傳統(tǒng)半導(dǎo)體芯片制造技術(shù)所面臨的一些技術(shù)瓶頸,并且有望實現(xiàn)更高效、更強大的計算能力。
兩大技術(shù)分支被業(yè)界看好
據(jù)了解,硅基量子比特芯片、離子阱量子比特芯片以及超導(dǎo)量子比特芯片等是目前量子芯片的主流研究方向。其中,硅基量子比特芯片以及超導(dǎo)量子比特芯片是目前最受關(guān)注的兩大技術(shù)分支,業(yè)內(nèi)一些企業(yè)已經(jīng)取得了成績。
硅基量子比特芯片是利用硅材料的特殊性質(zhì),將單個電子嵌入硅晶格中,實現(xiàn)硅基量子比特的制備。這種技術(shù)在制造上的成本相對較低,且與傳統(tǒng)半導(dǎo)體工業(yè)有天然的銜接。
量子芯片技術(shù)的特點在于利用其原本的生產(chǎn)線工藝,實現(xiàn)了大規(guī)模集成,并通過提高比特的操控溫度,從MK提升到K級,使得量子芯片的集成化加工更近一步。
超導(dǎo)量子比特芯片是量子芯片領(lǐng)域的另一個重要分支,其核心是利用超導(dǎo)材料的獨特性質(zhì)來提高量子比特的操作性能。超導(dǎo)量子芯片同樣可以看作量子芯片的一種演進形式,通過引入超導(dǎo)技術(shù),加強了量子比特的穩(wěn)定性和可控性,從而更好地適應(yīng)量子計算的需求。
IBM量子芯片規(guī)劃圖(圖片來源:IBM)
運行環(huán)境嚴苛成主要發(fā)展瓶頸
雖然,量子芯片被視為處理海量數(shù)據(jù)的新路徑,但距離大規(guī)模應(yīng)用,依舊需要時間。
據(jù)了解,量子芯片需要在低溫環(huán)境下運行,從而降低熱噪聲和減少環(huán)境干擾,并保持量子比特的穩(wěn)定性和相干性。量子比特在高溫下容易受到環(huán)境中的噪聲干擾,這種噪聲會破壞量子比特的疊加態(tài),導(dǎo)致信息丟失。為了減少這種干擾,量子芯片需要在-273℃左右的極低溫度下運行。在這個溫度下,系統(tǒng)中粒子之間的相互作用非常微弱,因此熱噪聲和環(huán)境干擾對量子比特的影響會降到最低。然而,實現(xiàn)這種低溫環(huán)境需要使用特定的設(shè)備,如稀釋式冰箱,這種設(shè)備不僅體積龐大,而且價格昂貴能耗巨大。
為保證量子芯片能夠在低溫環(huán)境下正常運行,可以嘗試使用在低溫狀態(tài)表現(xiàn)較為突出的材料。例如,在超導(dǎo)量子比特芯片領(lǐng)域,鉭和鈮是兩種備受關(guān)注的關(guān)鍵材料。它們具有優(yōu)異的超導(dǎo)性能,常被用作超導(dǎo)線圈和超導(dǎo)磁體等超導(dǎo)器件的核心材料。同時,鉭和鈮的超導(dǎo)性能在低溫下表現(xiàn)突出。在極低的溫度下,這些材料中的電子能夠形成庫珀對,從而具有零電阻和抗磁性的特性。這一特性使得鉭和鈮在制造高性能量子芯片方面具有巨大潛力。此外,使量子芯片能夠在常態(tài)環(huán)境下運行,是實現(xiàn)量子芯片規(guī)模化應(yīng)用的關(guān)鍵。業(yè)內(nèi)專家說:“目前,量子芯片只能在一些特殊的領(lǐng)域采用,難以像手機芯片一樣供人們大規(guī)模使用。因此,尋找一種可以在常溫、常壓下運行的量子芯片也是當(dāng)前的研究重點。”
編輯:黃飛
-
芯片制造
+關(guān)注
關(guān)注
10文章
622瀏覽量
28805 -
數(shù)據(jù)處理
+關(guān)注
關(guān)注
0文章
595瀏覽量
28557 -
量子芯片
+關(guān)注
關(guān)注
2文章
111瀏覽量
19026 -
算力
+關(guān)注
關(guān)注
1文章
966瀏覽量
14796
原文標(biāo)題:量子芯片能挑起算力大梁嗎?
文章出處:【微信號:bdtdsj,微信公眾號:中科院半導(dǎo)體所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論