色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

用語言對齊多模態信息,北大騰訊等提出LanguageBind,刷新多個榜單

深度學習自然語言處理 ? 來源:機器之心 ? 2023-11-23 15:46 ? 次閱讀

在博士畢業就有10篇ACL一作的師兄指導下是種什么體驗

北京大學與騰訊等機構的研究者們提出了多模態對齊框架 ——LanguageBind。該框架在視頻、音頻、文本、深度圖和熱圖像等五種不同模態的下游任務中取得了卓越的性能,刷榜多項評估榜單,這標志著多模態學習領域向著「大一統」理念邁進了重要一步。

在現代社會,信息傳遞和交流不再局限于單一模態。我們生活在一個多模態的世界里,聲音、視頻、文字和深度圖等模態信息相互交織,共同構成了我們豐富的感知體驗。這種多模態的信息交互不僅存在于人類社會的溝通中,同樣也是機器理解世界所必須面對的挑戰。

如何讓機器像人類一樣理解和處理這種多模態的數據,成為了人工智能領域研究的前沿問題。

在過去的十年里,隨著互聯網和智能設備的普及,視頻內容的數量呈爆炸式增長。視頻平臺如 YouTube、TikTok 和 Bilibili 等匯聚了億萬用戶上傳和分享的視頻內容,涵蓋了娛樂、教育、新聞報道、個人日志等各個方面。如此龐大的視頻數據量為人類提供了前所未有的信息和知識。為了解決這些視頻理解任務,人們采用了視頻 - 語言(VL)預訓練方法,將計算機視覺和自然語言處理結合起來,這些模型能夠捕捉視頻語義并解決下游任務。

然而,目前的 VL 預訓練方法通常僅適用于視覺和語言模態,而現實世界中的應用場景往往包含更多的模態信息,如深度圖、熱圖像等。如何整合和分析不同模態的信息,并且能夠在多個模態之間建立準確的語義對應關系,成為了多模態領域的一個新的挑戰。

為了應對這一難題,北大與騰訊的研究人員提出了一種新穎的多模態對齊框架 ——LanguageBind。與以往依賴圖像作為主導模態的方法不同,LanguageBind 采用語言作為多模態信息對齊的紐帶。

d09ea0e0-7ef0-11ee-939d-92fbcf53809c.png

論文地址:https://arxiv.org/pdf/2310.01852.pdf

GitHub 地址:https://github.com/PKU-YuanGroup/LanguageBind

Huggingface 地址:https://huggingface.co/LanguageBind

語言因其內在的語義豐富性和表現力,被賦予了整合和引導其他模態信息對齊的能力。在這個框架下,語言不再是附屬于視覺信息的標注或說明,而是成為了聯合視覺、音頻和其他模態的中心通道。

LanguageBind 通過將所有模態的信息映射到一個統一的語言導向的嵌入空間,實現了不同模態之間的語義對齊。這種對齊方法避免了通過圖像中介可能引入的信息損失,提高了多模態信息處理的準確性和效率。更重要的是,這種方法為未來的擴展提供了靈活性,允許簡單地添加新的模態,而無需重新設計整個系統。

此外,該研究團隊構建了 VIDAL-10M 數據集,這是一個大規模、包含多模態數據對的數據集。

VIDAL-10M 涵蓋了視頻 - 語言、紅外 - 語言、深度 - 語言和音頻 - 語言配對,以確??缒B的信息是完整且一致的。通過在該數據集上進行訓練,LanguageBind 在視頻、音頻、深度和紅外等 15 個廣泛的基準測試中取得了卓越的性能表現。

d0c06144-7ef0-11ee-939d-92fbcf53809c.png

d0e06b6a-7ef0-11ee-939d-92fbcf53809c.png

方法介紹

在多模態信息處理領域,主流的對齊技術,如 ImageBind,主要依賴圖像作為橋梁來實現不同模態之間的間接對齊。這種方法在對其他模態和語言模態的對齊上可能會導致性能次優化,因為它需要兩步轉換過程 —— 首先是從目標模態到圖像模態,然后是從圖像模態到語言模態。這種間接對齊可能導致語義信息在轉換過程中的衰減,從而影響最終的性能表現。

d1075824-7ef0-11ee-939d-92fbcf53809c.png

針對這一問題,該團隊提出了一種名為 LanguageBind 的多模態語義對齊預訓練框架。該框架摒棄了依賴圖像作為中介的傳統模式,而是直接利用語言模態作為不同模態之間的紐帶。語言模態因其天然的語義豐富性,成為連接視覺、音頻、深度等模態的理想選擇。LanguageBind 框架通過利用對比學習機制,將不同模態的數據映射到一個共享的語義嵌入空間中。在這個空間里,不同模態的信息可以直接進行語義層面的理解與對齊。

d126bd86-7ef0-11ee-939d-92fbcf53809c.png

LanguageBind 概覽圖

具體而言,LanguageBind 通過錨定語言模態,采用一系列優化的對比學習策略,對多模態數據進行預訓練。這一過程中,模型學習將來自不同模態的數據編碼到與語言模態相兼容的表征中,確保了模態間的語義一致性。這種直接的跨模態語義對齊避免了傳統方法中的性能損失,同時提高了模型在下游多模態任務中的泛化能力和適用性。

LanguageBind 框架的另一個優點是其擴展性。由于直接使用語言作為核心對齊模態,當引入新的模態時,無需重構整個對齊機制,只需通過相同的對比學習過程,將新模態的數據映射到已經建立的語言導向嵌入空間。這使得 LanguageBind 不僅適用于現有的模態,也能輕松適應未來可能出現的新模態,為多模態預訓練技術的發展奠定了堅實基礎。

數據集介紹

在跨模態預訓練領域,數據集的構建及其質量對于預訓練模型的性能與應用效能具有決定性影響。傳統的多模態數據集大多局限于二模態或三模態的配對數據,這種限制導致了對更豐富模態對齊數據集的需求。

因而,該團隊開發了 VIDAL-10M 數據集,這是一個創新的五模態數據集,包含了視頻 - 語言(VL)、紅外 - 語言(IL)、深度 - 語言(DL)、音頻 - 語言(AL)等數據對。每個數據對都經過了精心的質量篩選,旨在為跨模態預訓練領域提供一個高品質、高完整性的訓練基礎。

d15ec6e0-7ef0-11ee-939d-92fbcf53809c.png

VIDAL-10M 數據集示例

VIDAL-10M 數據集的構建主要包括三步:

視覺相關搜索詞庫構建。設計一種創新的搜索詞獲取策略,該策略綜合利用了各類視覺任務數據集中的文本信息,如標簽和標題,以構建一個豐富視覺概念且多樣化的視頻數據集,從而增強了數據多樣性和覆蓋度。

視頻和音頻數據的收集、清洗與篩選:在數據的收集過程中,該研究采取了基于文本、視覺和音頻內容的多種過濾機制,這些機制確保收集到的視頻和音頻數據與搜索詞高度相關,并且滿足高標準的質量要求。這一步驟是確保數據集質量的關鍵環節,它直接影響模型訓練的效果和后續任務的性能。

紅外、深度模態數據生成與多視角文本增強。此階段,利用多種先進的生成模型技術合成了紅外和深度模態數據,并對文本內容進行了多角度的生成和增強。多視角文本增強包括了標題、標簽、關鍵幀描述、視頻概要等多個維度,它為視頻內容提供了全面且細致的描述,增強了數據的語義豐富性和描述的細粒度。

d1b74ffe-7ef0-11ee-939d-92fbcf53809c.png

VIDAL-10M 數據集的構建過程

實驗

LanguageBind 框架被應用于多個模態的零樣本分類任務,并與其他模型進行了性能比較。實驗結果顯示,LanguageBind 方法在包括視頻、音頻、深度圖像、熱成像等多模態數據上的 15 個零樣本分類與檢索任務中均展示了顯著的性能提升。這些實驗成果強調了 LanguageBind 方法在理解和處理不同模態數據中的潛在能力,尤其是在沒有先前樣本可供學習的情況下。為了更深入地了解 LanguageBind 方法的性能,可以參照以下詳細的實驗結果。

表 2 顯示,LanguageBind 的性能在 MSR-VTT 上超過 VideoCoca 和 OmniVL ,盡管僅使用 300 萬個視頻 - 文本對。

d1ddf640-7ef0-11ee-939d-92fbcf53809c.png

在兩個經典數據集 MSR-VTT 和 MSVD 上進行的零樣本視頻 - 文本檢索實驗結果如表 3 所示:

d1fe8842-7ef0-11ee-939d-92fbcf53809c.png

該研究還將本文模型與 SOTA 多模態預訓練模型 OpenCLIP、ImageBind 在多模態理解任務上進行了比較,結果如表 4 所示:

d220c326-7ef0-11ee-939d-92fbcf53809c.png

表 5 比較了在 Clotho 數據集和 Audiocaps 數據集上的零樣本文本 - 音頻檢索性能:

d23bc054-7ef0-11ee-939d-92fbcf53809c.png

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 圖像
    +關注

    關注

    2

    文章

    1085

    瀏覽量

    40489
  • 模型
    +關注

    關注

    1

    文章

    3254

    瀏覽量

    48878
  • 智能設備
    +關注

    關注

    5

    文章

    1060

    瀏覽量

    50605
  • 數據集
    +關注

    關注

    4

    文章

    1208

    瀏覽量

    24722

原文標題:用語言對齊多模態信息,北大騰訊等提出LanguageBind,刷新多個榜單

文章出處:【微信號:zenRRan,微信公眾號:深度學習自然語言處理】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    商湯日日新模態大模型權威評測第一

    剛剛,商湯科技日日新SenseNova模態大模型,在權威綜合評測權威平臺OpenCompass的模態評測中取得榜單第一。
    的頭像 發表于 12-20 10:39 ?234次閱讀

    一文理解模態語言模型——下

    /understanding-multimodal-llms ? 《一文理解模態語言模型 - 上》介紹了什么是模態
    的頭像 發表于 12-03 15:18 ?134次閱讀
    一文理解<b class='flag-5'>多</b><b class='flag-5'>模態</b>大<b class='flag-5'>語言</b>模型——下

    一文理解模態語言模型——上

    /understanding-multimodal-llms 在過去幾個月中, OpenVINO? 架構師 Yury閱讀了眾多有關模態語言模型的論文和博客,在此基礎上,推薦了一篇解讀
    的頭像 發表于 12-02 18:29 ?341次閱讀
    一文理解<b class='flag-5'>多</b><b class='flag-5'>模態</b>大<b class='flag-5'>語言</b>模型——上

    利用OpenVINO部署Qwen2模態模型

    模態大模型的核心思想是將不同媒體數據(如文本、圖像、音頻和視頻)進行融合,通過學習不同模態之間的關聯,實現更加智能化的信息處理。簡單來說
    的頭像 發表于 10-18 09:39 ?453次閱讀

    云知聲山海模態大模型UniGPT-mMed登頂MMMU測評榜首

    近日,模態人工智能模型基準評測集MMMU更新榜單,云知聲山海模態大模型UniGPT-mMed以通用能力、醫療專業能力雙雙排名第一的優異成
    的頭像 發表于 10-12 14:09 ?302次閱讀
    云知聲山海<b class='flag-5'>多</b><b class='flag-5'>模態</b>大模型UniGPT-mMed登頂MMMU測評榜首

    Meta發布模態LLAMA 3.2人工智能模型

    Meta Platforms近日宣布了一項重要技術突破,成功推出了模態LLAMA 3.2人工智能模型。這一創新模型不僅能夠深度解析文本信息,還實現了對圖像內容的精準理解,標志著Meta在AI
    的頭像 發表于 09-27 11:44 ?413次閱讀

    云知聲推出山海模態大模型

    在人工智能技術的浩瀚星海中,模態交互技術正成為引領未來的新航標。繼OpenAI的GPT-4o掀起滔天巨浪后,云知聲以創新之姿,推出了其匠心獨運的山海模態大模型,正式宣告“Her時代
    的頭像 發表于 08-27 15:20 ?396次閱讀

    智譜AI發布全新模態開源模型GLM-4-9B

    近日,智譜AI在人工智能領域取得重大突破,成功推出全新開源模型GLM-4-9B。這款模型以其卓越的模態能力,再次刷新了業界對于大型語言模型的認識。
    的頭像 發表于 06-07 09:17 ?758次閱讀

    智譜AI領跑司南OpenCompass 2.0月度榜單,GLM-4展示強大實力

    (OpenCompass 2.0)由上海人工智能實驗室發布。其月度榜單從基礎能力和綜合能力的設計出發,構建了一套高質量的中英文雙語評測基準體系,對主流開源模型和商業API模型進行了全面評測分析。評測榜單涉及的大語言模型和
    的頭像 發表于 05-22 12:44 ?625次閱讀
    智譜AI領跑司南OpenCompass 2.0月度<b class='flag-5'>榜單</b>,GLM-4展示強大實力

    李未可科技正式推出WAKE-AI模態AI大模型

    文本生成、語言理解、圖像識別及視頻生成模態交互能力。 ? 該大模型圍繞 GPS 軌跡+視覺+語音打造新一代 LLM-Based的自然交互,同時
    發表于 04-18 17:01 ?613次閱讀
    李未可科技正式推出WAKE-AI<b class='flag-5'>多</b><b class='flag-5'>模態</b>AI大模型

    AI機器人迎來模態模型

    配備 GR00T 模型的機器人由于需要“吸收消化”外界的模態信息,還要快速完成理解、決策、行動一系列動作,因此對于算力的需求是巨量的。
    發表于 04-12 10:39 ?283次閱讀

    fpga通用語言是什么

    FPGA(現場可編程門陣列)的通用語言主要是指用于描述FPGA內部邏輯結構和行為的硬件描述語言。目前,Verilog HDL和VHDL是兩種最為廣泛使用的FPGA編程語言。
    的頭像 發表于 03-15 14:36 ?520次閱讀

    韓國Kakao宣布開發模態語言模型“蜜蜂”

    韓國互聯網巨頭Kakao最近宣布開發了一種名為“蜜蜂”(Honeybee)的模態大型語言模型。這種創新模型能夠同時理解和處理圖像和文本數據,為更豐富的交互和查詢響應提供了可能性。
    的頭像 發表于 01-19 16:11 ?706次閱讀

    機器人基于開源的模態語言視覺大模型

    ByteDance Research 基于開源的模態語言視覺大模型 OpenFlamingo 開發了開源、易用的 RoboFlamingo 機器人操作模型,只用單機就可以訓練。
    發表于 01-19 11:43 ?424次閱讀
    機器人基于開源的<b class='flag-5'>多</b><b class='flag-5'>模態</b><b class='flag-5'>語言</b>視覺大模型

    什么是模態?模態的難題是什么?

    模態大模型,通常大于100M~1B參數。具有較強的通用性,比如對圖片中任意物體進行分割,或者生成任意內容的圖片或聲音。極大降低了場景的定制成本。
    的頭像 發表于 01-17 10:03 ?4668次閱讀
    什么是<b class='flag-5'>多</b><b class='flag-5'>模態</b>?<b class='flag-5'>多</b><b class='flag-5'>模態</b>的難題是什么?
    主站蜘蛛池模板: 欧美成人亚洲高清在线观看| 武侠艳妇屈辱的张开双腿| 亚洲黄网站wwwwww| 精子射到丝袜上图| 91麻豆国产精品91久久久| 品色堂主页| 国产精品久久久久久久久齐齐| 午夜伦理 第1页| 久久亚洲精品中文字幕| 扒开腿狂躁女人GIF动态图| 无码人妻精品一区二区蜜桃色欲| 狠狠色狠狠色综合日日32| 97伦理97伦理2018最新| 色多多污污在线播放免费| 激情午夜307| CHINA末成年VIDEO学生| 午夜看片a福利在线观看| 久久亚洲这里只有精品18| 第一精品福利导福航| 一边亲着一面膜下奶韩剧免费 | 9277高清在线观看视频| 日韩精品一区二区亚洲AV观看| 好大好硬好湿再深一点网站| av先锋影音资源男人站| 亚洲黄色高清| 欧美一区二区视频在线观看| 韩国hd高清xxx| www伊人网| 伊人久久大香线蕉无码麻豆| 日本强好片久久久久久AAA| 久久久免费热线精品频| 国产精品热久久高潮AV袁孑怡| 91免费永久在线地址| 亚洲国产欧美日本大妈| 女子叉开腿让男子桶免费软件| 国产精品自在在线午夜蜜芽tv在线| 97免费在线视频| 夜色福利院在线观看免费| 手机看片一区二区| 欧美成a人片免费看久久| 久久精品国产亚洲AV蜜臀 |