色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

SuperPoint語義 SLAM深度學習用于特征提取

新機器視覺 ? 來源:古月居 ? 2023-12-10 10:52 ? 次閱讀

1. 概況

作者的寫作思路很清晰,把各個技術點這么做的原因寫的很清楚,全文共三篇,可以看清作者在使用深度學習進行位姿估計這一方法上的思路演變過程,為了把這一脈絡理清楚,我們按照時間順序對這三篇文章分別解讀,分別是:

1)Deep Image Homography Estimation

2)Toward Geometric Deep SLAM

3)SuperPoint: Self-Supervised Interest Point Detection and Description

本期,我們首先對Deep Image Homography Estimation進行解讀。

2. 第一篇

Deep Image Homography Estimation

礦視成果

參考R TALK |圖像對齊及其應用(https://zhuanlan.zhihu.com/p/99758095Deep)

1.1. 概述


Deep Image Homography Estimation 是通過端到端的方式估計一對圖像的單應矩陣。訓練數據集是從MS-COCO上選取圖片,然后把這張圖片進行單應性變換得到圖象對的方式生成的。為了得到矩陣變換的置信度(比如slam中設置方差需要這些東西),作者把網絡分成兩部分,分別對應兩種輸出,一種輸出單一變換結果,另一種輸出多個可能的變換結果,并給出每種變換結果的置信度,實際使用時,選擇置信度最高的那個。

1.2. 算法流程


1.2.1 基礎知識


本篇文章所提出的方法輸出的是單應性矩陣,所謂單應性矩陣,就是圖象中的目標點認為是在一個平面上,相應的,如果不在一個平面上則被成為基礎矩陣。

在實際的slam應用中,單應矩陣在以下這三種情況時需要用到:

相機只有旋轉而無平移的時候,兩視圖的對極約束不成立,基礎矩陣F為零矩陣,這時候需要使用單應矩陣H場景中的點都在同一個平面上,可以使用單應矩陣計算像點的匹配點。

相機的平移距離相對于場景的深度較小的時候,也可以使用單應矩陣H。

在大家熟悉的ORB-SLAM中初始化的時候,就是單應矩陣和基礎矩陣同時估計,然后根據兩種方法估計出的結果計算重投影誤差,選擇重投影誤差最小的那個作為初始化結果。

1.2.2 建立模型

一個單應矩陣其實就是一個3X3的矩陣,通過這個矩陣,可以把圖像中的一個點,投影到對應的圖像對上去,對應的公式為

8c5cdf68-9698-11ee-8b88-92fbcf53809c.png

在這篇文章中,作者為了更好的訓練模型和評估算法效果,采用了另外一種模型,來等效代替上面的公式。我們知道,一張圖片進行單應性變換的時候,圖像上的點的坐標會根據變換矩陣發生變化(如上式),那么反過來,如果我知道n個變換前后的點的坐標,那么這兩張圖片之間的變換矩陣便可以得到,在平面關系中,n為4,即至少知道四個點就可以。因此作者用四個點對應的變化量來建立一個新的模型,如下式所示

8c6d262a-9698-11ee-8b88-92fbcf53809c.png

它和單應性矩陣具有一一對應的關系

8c774f60-9698-11ee-8b88-92fbcf53809c.png

這樣做的好處是,把圖片對之間的矩陣關系,轉換成了點和點之間的關系,在進行精度評估時,可以直接根據轉換后的點的坐標與真實的坐標計算距離,作為誤差評估指標,而且,還可以用于網絡中損失函數的計算。

1.2.3 生成數據集

作者采用MS-COCO作為數據集,不過該數據集中沒有圖像對,也即沒有單應矩陣的真值,這是沒法進行訓練的。因此作者根據數據集中原有圖像,自動生成了圖像對。具體方法如下圖所示

8c83ca6a-9698-11ee-8b88-92fbcf53809c.png

具體步驟為:

1.在圖像中選取一個長方形區域,區域就可以用上面說的四個點的模型來表示;

2.把區域的四個點隨機進行平移,這樣就得到一個四邊形,這兩個四邊形之間的單應矩陣也就是已知的;

3.把圖像按照這個單應矩陣進行變換,并選取被四邊形框住的區域;

4.這樣1)中和3)中得到的圖像就形成了一個已知真實單應矩陣的圖像對。

1.2.4 設計網絡結構


本文的網絡結構如下圖所示

8ca27064-9698-11ee-8b88-92fbcf53809c.png

網絡分成兩部分,分別是Classification HomographyNet 和 Regression HomograhyNet,后者是直接輸出8個量,這8個量自然就是四個點各自的x和y坐標值。但這樣的缺點也很明顯,就是不知道每個坐標值的置信度是多少,比如在slam中設置方差時就沒有根據。因此Classification HomographyNet就是在Regression HomograhyNet的基礎上,把輸出端改成了8X21的輸出向量,這里的8仍然是四個點各自的x和y坐標,這里的21是每個坐標值的可能值之一,并且給出了該值的概率,這樣就可以定量分析置信度了。該網絡所輸出的置信度的可視化效果如下圖所示

8cb19b98-9698-11ee-8b88-92fbcf53809c.png

1.2.5 實驗結果


實驗結果的精度評測方法就是根據每個點的坐標按照單應矩陣進行轉換后,和真實坐標進行L2距離測量,再把四個點的誤差值取平均得到。作者把網絡兩部分的輸出和ORB特征計算的結果分別進行了評測,對比結果如下:

8cba2614-9698-11ee-8b88-92fbcf53809c.png

從這張表里看,并沒有比ORB表現出明顯的優勢,但是作者展示了幾張圖片,每個圖片里顯示了矯正之后的方框對,從方框對中可以明顯看出區別。左邊是ORB方法的,右邊是本文方法的。

1.3. 總結與思考


設計了一種端到端的單應矩陣的估計方法,采用提取定點的結構等效單應矩陣,基于這種結構設計了數據集產生方法和精度評測方法,最終的結果顯示效果要明顯高于ORB進行的提取。

可以看到回歸的方法效果最好,但是分類的方法可以得到置信度,且可以可視化地糾正實驗結果,在某些應用中是有優勢的。

作者總結了這個系統的兩個優勢:

第一,速度快,借助英偉達的泰坦顯卡,可以實現每秒處理300幀的圖像。

第二,將計算機視覺中最基礎的單應矩陣的估計問題轉化為機器學習的問題,可以針對應用情景如使用SLAM的室內導航機器人做特定優化。

事實上,單應矩陣在圖像拼接,ORB-SLAM算法和Augmented Reality(AR),相機標定中都有很重要的應用。這篇文章的三個作者都來自Magic Leap公司,一家做AR的公司,已經得到了Google和阿里巴巴等公司是十幾億美金的投資。

新的思考:


1)這種將深度學習用于解決傳統方法中遇到的困難的設計模式值的我們思考與學習,這樣可以充分的將誒和傳統與深度學習的共同特點。

2)這種從圖像中產生真值,然后在利用這些圖像去估計矩陣的方式是由于過擬合導致效果好?

3)單應矩陣一般特征共面時使用,論文中最后對比效果所列的圖片明顯不是這種情況(展示數據可以理解為遠視角場景),它之所以能對齊,是因為它用這個訓練的,而ORB是根據真實的場景估計的,沒有共面假設,對比實驗設計的合理性。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 算法
    +關注

    關注

    23

    文章

    4613

    瀏覽量

    92948
  • SLAM
    +關注

    關注

    23

    文章

    425

    瀏覽量

    31841
  • 深度學習
    +關注

    關注

    73

    文章

    5503

    瀏覽量

    121200

原文標題:【SLAM】SuperPoint 語義 SLAM 深度學習用于特征提取

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    基于卷積神經網絡的雙重特征提取方法

    機器學習技術已被廣泛接受,并且很適合此類分類問題。基于卷積神經網絡的雙重特征提取方法。提出的模型使用Radon拉冬變換進行第一次特征提取,然后將此特征輸入卷積層進行第二次
    發表于 10-16 11:30 ?607次閱讀
    基于卷積神經網絡的雙重<b class='flag-5'>特征提取</b>方法

    模擬電路故障診斷中的特征提取方法

    實現時與神經網絡有兩種結合方式:一是松散型結合,二是緊致型結合。松散型結構是數據預處理采用的最常見的方式,目前緊致型結構的小波神經網絡也已成功用于模擬電路的去噪和特征提取。由于緊致型小波神經網絡是用
    發表于 12-09 18:15

    HOOFR-SLAM的系統框架及其特征提取

    Intelligent Vehicles Applications1. 介紹2. HOOFR-SLAM2.1 系統框架2.2 HOOFR特征提取2.3 映射線程2.3.1 特征匹配1. 介紹提出一種HOOFR-...
    發表于 12-21 06:35

    基于已知特征項和環境相關量的特征提取算法

    在現有基于已知特征特征提取算法的基礎上,提出一種基于已知特征項和環境相關量的特征提取算法。該算法通過已知特征項搜索頻繁項集,提高了
    發表于 04-18 09:37 ?17次下載

    故障特征提取的方法研究

    摘要:針對常規特征提取方法存在著問題不足,提出了基于BP神經網絡和基于互信息熵的特征提取方法,并通過特征提取實例加以說明。結果表明這兩種方法是可行和有效的。
    發表于 03-11 13:14 ?1498次閱讀
    故障<b class='flag-5'>特征提取</b>的方法研究

    基于Gabor的特征提取算法在人臉識別中的應用

    針對人臉識別中的特征提取問題,提出一種新的基于Gabor的特征提取算法,利用Gabor小波變換良好的提取區分能力和LDA所具有的判別性優勢來進行特征提取。首先利用Gabor小波變換來
    發表于 01-22 14:25 ?54次下載

    Curvelet變換用于人臉特征提取與識別

    人臉檢測是一個非常復雜的模式,人臉面部特征提取及識別成為當前計算機圖像處理相關學科的一個極具挑戰的課題。而基于Carvelet變換的人臉特征提取及識別的意義在于Curvelet繼承了小波分析優良
    發表于 11-30 15:09 ?3824次閱讀
    Curvelet變換<b class='flag-5'>用于</b>人臉<b class='flag-5'>特征提取</b>與識別

    基于LBP的深度圖像手勢特征提取算法

    針對復雜環境下的深度圖像手勢特征提取信息冗余量大、編碼不穩定等問題,提出了一種改進的基于曲率局部二值模式( LBP)的深度圖像手勢特征提取算法。該算法首先通過坐標轉換將分割出的手勢
    發表于 12-11 16:21 ?4次下載

    基于主成分分析方向深度梯度直方圖的特征提取算法

    針對立體視覺深度特征提取精確度低、復雜度高的問題,提出了一種基于主成分分析方向深度梯度直方圖( PCA-HODG)的特征提取算法。首先,對雙目立體視覺圖像進行視差計算和
    發表于 12-26 14:32 ?0次下載
    基于主成分分析方向<b class='flag-5'>深度</b>梯度直方圖的<b class='flag-5'>特征提取</b>算法

    基于HTM架構的時空特征提取方法

    針對人體動作識別中時空特征提取問題,提出一種基于層次時間記憶( HTM)架構的深度學習模型,用來提取圖像幀的時空特征。將圖像幀構建成樹型節點
    發表于 01-17 17:27 ?0次下載
    基于HTM架構的時空<b class='flag-5'>特征提取</b>方法

    機器學習特征提取 VS 特征選擇

    機器學習特征選擇和特征提取區別 demi 在 周四, 06/11/2020 - 16:08 提交 1. 特征提取 V.S 特征選擇
    的頭像 發表于 09-14 16:23 ?4135次閱讀
    機器<b class='flag-5'>學習</b>之<b class='flag-5'>特征提取</b> VS <b class='flag-5'>特征</b>選擇

    計算機視覺中不同的特征提取方法對比

    特征提取是計算機視覺中的一個重要主題。不論是SLAM、SFM、三維重建等重要應用的底層都是建立在特征點跨圖像可靠地提取和匹配之上。特征提取
    的頭像 發表于 07-11 10:28 ?3449次閱讀

    如何看待SLAM技術不用神經網絡進行特征提取

    深度學習提取特征就一定好?顯然不是的。因為數據集的原因,利用深度學習訓練出的
    的頭像 發表于 05-19 10:21 ?1068次閱讀

    為什么目前落地的主流SLAM技術很少用神經網絡進行特征提取

    深度學習提取特征就一定好?顯然不是的。因為數據集的原因,利用深度學習訓練出的
    的頭像 發表于 05-19 10:25 ?1211次閱讀
    為什么目前落地的主流<b class='flag-5'>SLAM</b>技術很少用神經網絡進行<b class='flag-5'>特征提取</b>?

    深度解析深度學習下的語義SLAM

    隨著深度學習技術的興起,計算機視覺的許多傳統領域都取得了突破性進展,例如目標的檢測、識別和分類等領域。近年來,研究人員開始在視覺SLAM算法中引入深度
    發表于 04-23 17:18 ?1296次閱讀
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>學習</b>下的<b class='flag-5'>語義</b><b class='flag-5'>SLAM</b>
    主站蜘蛛池模板: 久久精品美女| 天堂tv免费tv在线tv香蕉| 亚洲久久少妇中文字幕| 国产在线观看成人免费视频| 亚洲欧美色综合影院| 久久无码人妻中文国产| 99热久久视频只有精品6国产| 强开少妇嫩苞又嫩又紧九色| 国产精品久久久久久久久LI无码| 亚洲欧美成人| 牛和人交videos欧美| 欧美精品做人一级爱免费| 成人高清护士在线播放| 污文乖不疼的| 久久成人免费观看草草影院| 99久在线国内在线播放免费观看| 日日射日日操| 精选国产AV精选一区二区三区| 99精彩视频在线观看| 无人区大片中文字幕在线| 久久精品一区二区免费看| 仓井空torrent| 亚洲视频在线观看地址| 欧美日韩无套内射另类| 国产亚洲精品品视频在线| 67194线在线精品观看| 伸进同桌奶罩里摸她胸作文| 久久99re2热在线播放7| 大肚婆孕妇网| 洲精品无码高潮喷水A片| 色偷偷男人的天堂a v| 老色69久久九九精品高潮| 国产高清免费视频免费观看| 69精品人人人人| 亚洲国产av| 日韩免费视频一区| 久久香蕉国产线看观看| 国产欧美一区二区三区在线看| 99视频免费在线观看| 野花日本手机观看大全免费3| 色爱区综合小说|