來源:德思特測試測量德思特干貨丨RTK、PPP與RTK-PPP?一文帶您認識高精定位及如何進行高精定位GNSS測試!(一)
歡迎關注虹科,為您提供最新資訊!
高精度定位與相關技術
隨著全球定位技術的不斷發展,人們對精準定位的需求也逐漸增加,GNSS技術已經成為了自動駕駛等許多關鍵領域的基礎,而伴隨著新興技術的出現與硬需求,GNSS的定位精度要求也越來越高,因此高精定位技術也越發重要。
01****關于GNSS與定位精度
1****GNSS技術發展
GNSS技術,即全球定位衛星系統,目前有美國的GPS、俄羅斯的GLONASS、歐洲的Galileo和中國的北斗,可以為全球用戶提供高精度的定位、導航和定時服務。GNSS系統的衛星數量在不斷增加,目前已經超過100顆。這意味著更多的衛星可用于提供全球定位服務,從而提高了定位的精確性和覆蓋范圍。
2 不同技術的定位精度
最初的GNSS接收器主要依賴于獨立單頻測量,其定位精度在5-10米左右。這種技術僅使用衛星的偽距數據來計算位置,精度有限。
在技術進步的推動下,多頻接收器開始廣泛使用,接收器能夠同時使用不同頻段的信號。這提高了信號的質量和精度,并有助于減小定位誤差,其定位精度約在3-5m。
隨著GNSS技術進一步發展,來越多的增強方法被應用到GNSS技術中,如基于偽距的距離修正和誤差建模,允許對衛星信號的誤差進行建模和校正,從而提高了定位精度。即通過糾正大氣延遲、鐘差、衛星軌道誤差等因素,可以將位置精度提高到1-3米,可以實現在不同應用領域中的高精度定位,包括民航、農業、測繪等。
目前,GNSS技術已經演進到了能夠實現高精度定位的階段,包括使用載波處理技術來處理衛星信號,實施更精確的誤差建模,以及采用RTK(實時差分定位)和PPP(精密點對點)技術。使用這些方法,定位精度可以進一步提高到小于1米,滿足了對精準定位的高要求,如測繪、自動駕駛汽車、無人機和精密農業等領域的需求。
3 定位誤差與消除方法
(1)誤差來源
然而由于設備、環境、衛星位置等各種原因,GNSS定位不是完全準確的,會受到多種誤差的影響,導致最終的定位有所偏差。常見的誤差來源有:
●電離層誤差(lonospheric errors)
●對流層誤差(Tropospheric errors)
●衛星軌道誤差(Satellite orbit errors)
●衛星時鐘誤差(Satellite clock errors)
●傳輸噪聲與多徑(RX noise and multipath)
●接收機時鐘誤差(Receiver clock errors)
●用戶等效測距誤差(UERE,user equivalent ranging error)
●水平精度因子(HDOP,horizontal dilution of precision)
(2)如何消除誤差
對于電離層誤差,其影響因素主要是仰角、頻率、正上方電子總量TEC,我們可以通過嵌入klobuchar電離層模型參數進入導航信息,降低近50%的誤差。此外,也可以通過多頻方法,獲取電離層自由偽距參數,采用距離校正計算,幾乎可以消除電離層誤差。
此外通過引入地面觀測站的方式可以實現對衛星鐘差、衛星軌道誤差、電離層誤差、對流層誤差的減少或消除。根據覆蓋區域和實現方式不同實現機制主要有兩種:
●Observation Space Representation,觀測域校正——小范圍校正,直接利用基站進行校正信息傳輸,例如RTK。
●State Space Representation,狀態域校正—— 大范圍乃至全球覆蓋,利用中心處理站解算與處理校正信息,并利用互聯網,衛星網絡等傳輸,例如PPP。
(3)通過雙差分方式消除接收機誤差
雙差分(Double-Difference)是全球導航衛星系統(GNSS)定位中的一種差分定位方法,旨在減小或消除定位中的一些誤差來源。與單差分定位不同,雙差分同時考慮了兩個接收器之間的相對位置差異以及兩個衛星之間的相對位置差異。這個方法在相對定位和高精度定位應用中非常有用。通過該方式可以有效減小或消除衛星鐘差、衛星軌道誤差、電離層誤差、對流層誤差,此外還可以消除接收機鐘差。
(4)其他辦法
此外,可以配之其他復雜方法,削弱或消除多徑與噪聲影響,如載波模糊度解算與基線處理。
02****RTK、PPP與RTK-PPP技術
1 RTK技術
RTK(Real-Time Kinematic)技術基于兩個GNSS接收器,其中一個充當基準站,另一個作為流動站。基準站精確定位并連續跟蹤衛星信號,同時記錄數據,而流動站接收衛星信號以定位自身,并從基準站獲取包含校正數據的RTCM信息來通過差分運算校正誤差。這一過程實現了毫米級的高精度三維實時定位,依賴于實時傳輸的校正數據,適用于測繪、建筑、農業、無人機導航等多個應用領域。
RTK技術的主要特點是在實時中提供毫米級別的定位精度。RTK是基準站與流動站之間的直接校正信息傳輸,因此可以解決衛星、傳輸軌跡以及接收機本身的誤差問題,但覆蓋區域小,并且精度隨著兩者之間的距離增加而降低。
2 PPP技術
PPP(Precise Point Positioning)技術是一種高精度的全球導航衛星系統(GNSS)定位技術,它是一種廣域的部署方案,通過CPF解算衛星誤差并傳輸給接收機做校正,允許用戶實現毫米級的三維位置精度,而無需依賴差分基站。與差分定位技術不同,PPP技術不需要在接收器和差分基站之間建立通信鏈接。用戶只需單獨的GNSS接收器和訪問PPP校正數據的互聯網連接,即可進行高精度定位。PPP技術適用于全球范圍,因為它不依賴于特定地理區域內的差分基站,只需有足夠的衛星可見性即可進行定位。但通常需要更長收斂時間的衛星信號觀測來實現高精度,因此對于需要長時間持續定位的應用更為適用。
3 二者的對比
本質上來講,這兩種技術都是在傳統GNSS定位的基礎上,使用增強技術來提高GNSS定位精度的,是在不同校正域上的延伸與實現。
4 PPP-RTK技術
在上述的介紹中可以發現,RTK技術與PPT技術各有優劣——RTK定位時間快,但是覆蓋距離小;PPP定位精度高,全球覆蓋,但是收斂時間慢,且部署成本較高。隨著需求和技術的發展,將PPP與RTK結合的技術(PPP-RTK)也出現了。
PPP-RTK是未來的主流與趨勢,PPP-RTK狀態域具備完好的服務優勢,可以實現全覆蓋、高精度、收斂快的高精度GNSS定位技術。
其主要原理為使用全球基站確定衛星鐘差、衛星軌道誤差;使用區域基準站對電離層誤差、對流層誤差等區域性誤差進行了分析,建立整網的電離層延遲、對流層延遲等誤差模型;并將全球和區域的誤差產品發送給移動終端進行定位。總的來看,具有以下優勢:
●全國覆蓋
PPP-RTK僅需不超過1000基站即可實現全國覆蓋,極大減少基站建設的成本投入,提高服務覆蓋范圍。
●單向播發
PPP-RTK采用單向廣播模式,更易實現海量用戶并發。同時,單向播發的服務模式能有效的保護用戶隱私。
●連續性
PPP-RTK對各項誤差采用廣域統一建模,提供全國范圍內的無縫連續定位服務。
●完好性
PPP-RTK通過將GNSS各類誤差分別建模并提供給用戶,各類誤差相互獨立,可分別進行完好性監測并生成相應的完好性產品,實現功能安全。
END
以上為高精度定位與相關技術(一)的主要內容,在下一章德思特將為大家介紹如何進行高精度GNSS測試和自動駕駛與高精度定位的其他技術等內容。
-
PPP
+關注
關注
0文章
18瀏覽量
10517 -
GNSS
+關注
關注
9文章
767瀏覽量
47902 -
RTK
+關注
關注
8文章
130瀏覽量
37511 -
高精度定位
+關注
關注
0文章
63瀏覽量
3720
發布評論請先 登錄
相關推薦
評論