色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

振蕩器電路圖分享

CHANBAEK ? 來源:網絡整理 ? 作者:網絡整理 ? 2024-02-19 14:54 ? 次閱讀

什么是振蕩器

振蕩器是一種電子元件或電路,其主要功能是將直流電能轉換為具有一定頻率的交流電能。振蕩器通常由放大電路、選頻電路和正反饋電路組成,它們相互協作以產生重復的電子信號,這些信號通常是正弦波或方波。

振蕩器的工作原理基于正反饋和相位條件。在振蕩器中,一部分輸出信號被反饋回輸入端,與原始輸入信號相加。如果反饋信號的相位與原始輸入信號的相位相差正好180度(即反相),并且反饋信號的幅度足夠大,那么就可以滿足振蕩的條件,使振蕩器開始產生穩定的振蕩。

振蕩器可以分為多種類型,包括諧波振蕩器和弛張振蕩器。此外,根據振蕩激勵方式的不同,振蕩器可以分為自激振蕩器和他激振蕩器;根據電路結構的不同,振蕩器可以分為阻容振蕩器、電感電容振蕩器、晶體振蕩器、音叉振蕩器等;根據輸出波形的不同,振蕩器可以分為正弦波振蕩器、方波振蕩器、鋸齒波振蕩器等。

振蕩器在電子設備中有廣泛的應用,如用于產生時鐘信號以驅動微處理器或其他數字電路,或用于無線電通信中的頻率合成器。不同類型的振蕩器具有不同的特點和應用范圍,因此在實際應用中需要根據具體需求選擇合適的振蕩器類型。

接下來小編給大家分享一些振蕩器電路圖,以及簡單分析它們的工作原理。

振蕩器電路圖分享

1、哈特利振蕩器電路圖

眾所周知,許多電子電路和微控制器需要具有特定頻率和幅度的信號源,其范圍可能從幾赫茲到幾千兆赫。為了提供這種類型的信號,我們使用稱為振蕩器的電路。這里簡單的哈特利振蕩器電路設計用于提供寬范圍的正弦輸出。

每個正弦振蕩器電路都會有儲能電路、放大器電路和反饋路徑,這里反饋應該是正的,并且振蕩器電路必須獲得無阻尼輸出。這種哈特利振蕩器電路廣泛應用于無線電通信和音頻系統。

image.png

Hartley 振蕩器電路具有包含兩個電感器和一個電容器的儲能電路,這里 BC547 晶體管在共發射極配置中充當單晶體管放大器。輸出通過輸出耦合電容C4取自BC547晶體管的集電極端子。反饋路徑通過儲能電路連接在集電極和基極之間。

當我們向該電路供電時,集電極電流開始上升并對儲能電路中的電容器 C 充電。當電容器充滿電時,它會通過 L1 和 L2 電感器放電,并開始初始振蕩。因此,L1 上的感應振蕩應用于放大器的發射極和基極端子之間,這將被放大,然后再次應用于反饋(儲能元件),此處儲能電路對信號產生 180° 相移,晶體管放大器對信號產生 180° 相移放大期間的信號,因此在儲能電路的輸入和輸出信號之間產生總 360° 相移。

2、考畢茲振蕩器電路圖

許多電子電路和微處理器或微控制器需要具有特定頻率和幅度的信號源,我們無法為電路中的各個元件提供多個電源,因此我們使用振蕩器電路為不同的電路元件提供不同電平的信號。這里簡單的考畢茲振蕩器電路被設計為產生恒定的正弦輸出。

image.png

在 Colpitts 振蕩器中,儲能電路包含兩個串聯連接的電容器 C1 和 C2,然后電感器 L1 與抽頭電容器并聯。晶體管 BC547 充當共發射極放大器,R1、R2 電阻器為 CB 端子和 BE 端子提供偏置。集電極和基極之間的反饋路徑在其路徑中具有儲能電路。

當電源接通時,電容器 C1 和 C2 充電。然后這些電容器通過線圈L放電,從而產生初始振蕩。 C2 上的振蕩施加到晶體管的基極發射極結。該振蕩被放大并在集電極電路中可用。來自集電極的放大功率施加到儲能電路,以滿足電容器C1和C2以及電感L之間的能量轉換過程中的損耗。反饋量取決于電容C1和C2的值。晶體管放大器提供 180° 相移,電容器反饋提供另一個 180° 相移。因此,總共會出現 360° 的相移,從而提供正反饋。因此,會產生連續的無阻尼振蕩。

3、1:800振蕩器電路圖

振蕩器很常見,但這個特殊的振蕩器具有獨特的功能。其頻率可在800:1的寬范圍內調節,在電壓控制下工作,如果控制電壓低于約0.6V,它會自動關閉。如圖所示,頻率特性曲線(f = f( Ue)) 近似為對數。當輸入電壓低于0.7V時,晶體管T1和T3處于截止狀態。在這種情況下,電容器通過 10kW 電阻器充電。振蕩電路由電容、兩個施密特觸發器和T2組成。然而,由于T3處于截止狀態,T2無法對電容器放電。

image.png

在此電路配置中,A1 為低電平,而 A2 在其初始狀態下為高電平。當輸入電壓升高時,T3 開始導通。這允許電容器通過 T2 放電,從而啟動電路振蕩。隨著輸入電壓的進一步增加,電容器通過 T1 和 100Ω 電阻接收額外的充電電流,導致振蕩器頻率上升。在輸出信號占空比不重要的應用中(例如時鐘發生器),該電路可以用作具有寬頻率范圍和關閉能力的壓控振蕩器(VCO)。

實時時鐘的頻率是根據特定應用定制的。廣泛采用的 32768 Hz (32.768 kHz) 頻率具有重要意義,因為它是 2 (215) 的冪,可通過 15 級二進制計數器實現精確的 1 秒周期(1 Hz 頻率)。

4、超低功耗32kHz振蕩器電路圖

與傳統的基于 CMOS 反相器的電路相比,32kHz 低功耗時鐘振蕩器具有明顯的優勢。逆變電路遇到挑戰;例如,電源電流在 3V 至 6V 電源范圍內大幅波動,導致電流消耗低于 250μA 成為問題。此外,由于電源電壓的大幅變化,操作變得不可靠,并且逆變器的輸入特性容易受到制造商之間廣泛的公差和差異的影響。

image.png

該電路有效地解決了上述問題。它的工作電流僅為 13 μA,采用 3 V 電源,由單晶體管放大器/振蕩器 (T1) 和低功耗比較器/參考器件 (IC1) 組成。 T1 的基極通過 R5/R4 和 IC1 中的參考電壓偏置為 1.25V。利用 5 μA(由 R3 設置)時 β 約為 100 的任何小信號晶體管,集電極電壓固定為比 Vcc 低 1 V 左右。放大器的增益標稱約為 2 V/V。 T1周圍的反饋路徑是由石英晶體與負載電容C1和C3結合建立的,由于T1的180度相移而引起振蕩。

在MAX931內部,比較器的1.25 V偏置電壓由通過R2的參考電壓定義。這可確保比較器的輸入擺幅準確地以參考電壓為中心。在 3V 和 32kHz 下工作時,IC1 僅消耗 7μA 電流。雖然比較器輸出可分別拉出和吸收 40 mA 和 5 mA 電流,但其 500 ns 和 100 ns 的適度上升/下降時間可能會導致標準高速 CMOS 邏輯中產生更高的開關電流。為了緩解這一問題,該電路在輸出端集成了一個可選的 74HC14 施密特觸發器,僅在電源電流略有增加的情況下平衡上升/下降時間。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電路圖
    +關注

    關注

    10340

    文章

    10720

    瀏覽量

    530233
  • 振蕩器
    +關注

    關注

    28

    文章

    3832

    瀏覽量

    139038
  • 晶體管
    +關注

    關注

    77

    文章

    9682

    瀏覽量

    138082
  • 晶體振蕩器
    +關注

    關注

    9

    文章

    617

    瀏覽量

    29106
收藏 人收藏

    評論

    相關推薦

    壓控振蕩器電路圖

    壓控振蕩器電路圖
    發表于 02-25 21:43 ?1151次閱讀
    壓控<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    差動振蕩器電路圖

    差動振蕩器電路圖
    發表于 12-15 15:09 ?912次閱讀
    差動<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    反饋振蕩器電路圖

    反饋振蕩器電路圖
    發表于 03-23 09:16 ?742次閱讀
    反饋<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    相移振蕩器電路圖

    相移振蕩器電路圖
    發表于 03-23 09:23 ?1076次閱讀
    相移<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    正弦振蕩器電路圖

    、 正弦振蕩器電路圖
    發表于 03-23 09:27 ?1414次閱讀
    正弦<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    皮爾斯振蕩器電路圖

    皮爾斯振蕩器電路圖
    發表于 03-25 09:37 ?3647次閱讀
    皮爾斯<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    自激振蕩器電路圖

    自激振蕩器電路圖
    發表于 04-07 09:31 ?2683次閱讀
    自激<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    射頻振蕩器電路圖

    射頻振蕩器電路圖
    發表于 04-09 08:49 ?1196次閱讀
    射頻<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    CMOS振蕩器電路圖

    CMOS振蕩器電路圖
    發表于 04-13 08:51 ?670次閱讀
    CMOS<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    RC振蕩器電路圖

    RC振蕩器電路圖
    發表于 04-13 08:51 ?3088次閱讀
    RC<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    TTL振蕩器電路圖

    TTL振蕩器電路圖
    發表于 04-13 08:52 ?605次閱讀
    TTL<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    自由振蕩方波振蕩器電路圖

    自由振蕩方波振蕩器電路圖
    發表于 04-13 08:54 ?776次閱讀
    自由<b class='flag-5'>振蕩</b>方波<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    選通振蕩器電路圖

    選通振蕩器電路圖
    發表于 04-15 09:33 ?385次閱讀
    選通<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    穩定的振蕩器電路圖

    穩定的振蕩器電路圖
    發表于 06-29 11:53 ?677次閱讀
    穩定的<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>

    振蕩器電路圖

    振蕩器電路圖
    發表于 07-08 11:38 ?949次閱讀
    主<b class='flag-5'>振蕩器</b><b class='flag-5'>電路圖</b>
    主站蜘蛛池模板: 男女床上黄色| 一本色道久久综合亚洲精品加| 中文字幕免费在线视频| 国产69精品麻豆久久久久| 老师那里好大又粗h男男| 亚洲AV无码乱码国产麻豆P| 草莓视频在线观看完整高清免费 | 久久亚洲精品2017| 窝窝色资源站| jk制服啪啪网站| 久久免费黄色| 丫鬟粗大狠狠贯穿h| 超碰97人在线视频| 男人的天堂色偷偷| 一级片mp4| 国内精品日本久久久久影院| 日韩黄色软件| aaaaaaa一级毛片| 老师掀开短裙让我挺进动态| 亚洲精品免费网站| 国产精品九九久久| 肉动漫h黄动漫日本免费观看 | 狠狠色狠狠色88综合日日91| 涩里番app黄版网站| jizzjizz3d动漫| 美女也烦恼主题曲| 中国二级毛片| 久久精品无码人妻无码AV蜜臀| 亚洲黄色在线观看| 国产精品久久久久久久久99热 | 欧美不卡一区二区三区| 孕妇泬出白浆18P| 精品国产乱码久久久久久软件| 性做久久久久久久久浪潮| 国产成人精品视频频| 日韩精品a在线视频| YY8090福利午夜理论片| 欧美深夜0000XXXX疯狂| 99免费精品| 女攻男受高h全文肉肉| 99精品观看|