色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

淺談超分辨光學成像

jf_64961214 ? 來源:jf_64961214 ? 作者:jf_64961214 ? 2024-03-15 06:35 ? 次閱讀

wKgaomXze7uAa9jAAABIyg0MW68449.png

分辨光學定義及應用

分辨光學成像特指分辨率打破了光學顯微鏡分辨率極限(200nm)的顯微鏡,技術原理主要有受激發射損耗顯微鏡技術和光激活定位顯微鏡技術。

管中亦可窺豹——受激發射損耗顯微鏡

傳統光學顯微鏡采用寬場成像的方式,照明光一次照亮整個成像范圍,然后用相機對整個成像范圍進行曝光成像,一次獲得整幅圖像。“管中窺豹”型的掃描成像則有所不同,照明光聚焦在樣品上,形成一個極小的光點——也就是所謂的“管”,每次只對光點對應的區域進行成像;當我們改變光點的位置,使它依次掃遍整個樣品,也就獲得了一幅完整的圖像。有人要問了,即使采用“管中窺豹”的方式,每次聚焦的光點依然受到衍射極限限制,系統分辨能力比起所謂的寬場成像沒有提高,掃描過程又增加了系統的復雜度,不是自找麻煩嗎?Stefan W. Hell的回答很簡單:只要設法縮小“管中窺豹”的“管”,就能提高系統的分辨能力,實現超分辨。

通常的熒光成像是這樣的:熒光分子在吸收了照明光(或者叫激發光)A之后,會在很短的時間持續發出熒光B。掃描成像系統的分辨能力取決于A在樣品處的聚焦光點大小。Hell找到了熒光的開關——第三種光C,在C的照射下,熒光分子即使吸收了激發光A,也沒法再發出熒光B。Hell讓開關C同樣打在樣品上,形成一個四周亮、中心暗的“面包圈”,“面包圈”中心的暗區域比艾里斑還要小;然后把面包圈套在艾里斑上,就像在“管”的出口又加了一個小孔,使“管”的直徑大大減少,也就提高了整臺顯微鏡的分辨能力。

wKgZomXze7yAF5R4AAClgWb0eRU021.png

“面包圈”限制了激發光A的有效范圍

“我只看到星星”“我看到了銀河”——光激活定位顯微

熒光分子是熒光樣品的最小發光單元,由于衍射極限的限制,在相鄰的兩個熒光分子同時點亮時,我們只能看到一個光斑,但如果每次只點亮一個分子,就可以通過光斑,計算得到熒光分子的準確位置。

Eric Betzig和William E. Moerner采用的就是這樣一種方法,如果說STED技術核心是“擦除”,那么PALM技術的核心就是“定位”:Moerner發現存在光D可以“打開”熒光。通過控制D的照射劑量,保證每次只有少量熒光分子處在打開狀態;當熒光分子在開與關之間切換時,整幅圖像中的熒光信號就會像銀河中的星星一樣亮暗閃爍,只要進行足夠多次的開關和成像,就可以組合出整個樣品的圖像。

wKgaomXze7yAVfaNAABI7n9ficQ029.jpg

溶酶體膜在不同顯微鏡下的成像結果。(左)傳統光學顯微鏡成像;(中)光激活定位顯微鏡成像;(右)放大的光激活定位顯微鏡成像。

參考使用產品

美國普林斯頓公司-FERGIE

wKgZomXze7yAJEHwAAJ65KgPpAU213.png

特點:

· 無像差光學設計,完全沒有彗形相差;

· FERGIE特有的光學設計可產生衍射極限圖像,適用于從紫外到近紅外波長的微光光譜應用;

· 集成TE冷卻背照式CCD,制冷低至-55°C,允許長的積分時間來檢測微弱的信號;

· 幀轉移CCD架構,1kHz的頻率捕獲光譜速率(合并10行);

· 基于FPGA的內部定時發生器;

· 動力學光譜模式,擁有微秒時間分辨率。

美國普林斯頓公司-IsoPlance

wKgaomXze72AA_oFAADAnr-Flo0163.jpg

特點:

· 無雜散光設計;

· 出色的成像性能;

· 高光通量;

· 動力學塔輪,支持三個光柵,軟件控制自動旋轉;

· 高效率光學鍍膜,可選的銀,金或介電涂層的反射率為98%。

審核編輯 黃宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 光譜
    +關注

    關注

    4

    文章

    853

    瀏覽量

    35506
  • 成像系統
    +關注

    關注

    2

    文章

    201

    瀏覽量

    14023
  • 光學成像
    +關注

    關注

    0

    文章

    87

    瀏覽量

    10188
收藏 人收藏

    評論

    相關推薦

    高像素分辨率2K(2048*2048)微型顯示器--純振幅液晶型空間光調制器FLCOS

    高像素分辨率2K(2048*2048)微型顯示器,具備高分辨率(2048x2048),高填充率(>94%),高響應速度(3.6KHz)的特點,適用于半導體外觀檢測、醫學成像、3D光學
    的頭像 發表于 01-23 14:22 ?158次閱讀
    高像素<b class='flag-5'>分辨</b>率2K(2048*2048)微型顯示器--純振幅液晶型空間光調制器FLCOS

    微型晶體管高分辨率X射線成像

    的前提下展現微小晶體管的特征。 研究人員使用混合光學成像技術和其他方法來縮小潛在的問題區域;然后, 研究人員用掃描電子顯微鏡對芯片的部分表面進行成像;最后對芯片切片,用透射電子顯微鏡(TEM)進一步成像。發現缺陷后,回頭來修改其
    的頭像 發表于 01-16 11:10 ?158次閱讀
    微型晶體管高<b class='flag-5'>分辨</b>率X射線<b class='flag-5'>成像</b>

    如何提高透鏡成像分辨

    透鏡成像分辨率是指透鏡系統能夠分辨的最小細節的能力。提高透鏡成像分辨率對于許多應用領域,如顯微鏡、望遠鏡、相機等,都是至關重要的。以下是一些
    的頭像 發表于 12-25 16:54 ?545次閱讀

    新型分辨顯微成像技術:突破光學衍射極限

    和運動偽影兩大技術難題,可在清醒動物腦中對神經元的快速動態進行分辨光學成像和解析,為探討動物學習過程中的神經元突觸可塑性基礎提供了新工具。近年來,新發展
    的頭像 發表于 12-19 06:21 ?296次閱讀
    新型<b class='flag-5'>超</b><b class='flag-5'>分辨</b>顯微<b class='flag-5'>成像</b>技術:突破<b class='flag-5'>光學</b>衍射極限

    次聲波在聲學成像中的應用

    學成像是一種利用聲波進行物體成像的技術,它在醫學、工業檢測、環境監測等領域有著廣泛的應用。傳統的聲學成像技術主要依賴于人耳可聽范圍的聲波(20Hz至20kHz),但隨著科技的發展,次聲波(頻率低于
    的頭像 發表于 12-11 15:36 ?727次閱讀

    光學成像新進展:使用部分相干光進行單向成像

    具有部分相干照明的單向衍射成像儀概念圖 來自加州大學洛杉磯分校(UCLA)的一個研究小組公布了光學成像技術的一項新進展,該技術可顯著增強視覺信息處理和通信系統。這項研究成果發表在《先進光子學
    的頭像 發表于 11-26 06:20 ?195次閱讀
    <b class='flag-5'>光學成像</b>新進展:使用部分相干光進行單向<b class='flag-5'>成像</b>

    光學成像的關鍵技術和工藝

    實現。 光譜成像 光譜成像技術可捕捉材料的光譜信息進行化學分析。 例如,拉曼光譜利用激光與分子振動的相互作用來揭示化學特性。它對于識別化合物和分析材料,包括監測手術環境中的麻醉氣體混合物至關重要。 醫學成像技術
    的頭像 發表于 11-01 06:25 ?298次閱讀
    <b class='flag-5'>光學成像</b>的關鍵技術和工藝

    南昌大學在聲學分辨率光聲顯微成像增強方面研究獲得進展

    圖1.基于均值回歸擴散模型的AR-PAM增強算法流程圖 光聲顯微成像(PAM)作為一種前景廣闊的成像模式,結合了光學成像的高空間分辨率和超聲成像
    的頭像 發表于 10-08 06:19 ?378次閱讀
    南昌大學在聲學<b class='flag-5'>分辨</b>率光聲顯微<b class='flag-5'>成像</b>增強方面研究獲得進展

    如何使用精密放大器改善醫學成像

    電子發燒友網站提供《如何使用精密放大器改善醫學成像.pdf》資料免費下載
    發表于 09-27 11:27 ?0次下載
    如何使用精密放大器改善醫<b class='flag-5'>學成像</b>

    什么是散射成像技術?

    近年來,計算機技術的飛速發展、介觀物理研究的深入、計算成像思想的完善和圖像處理技術的發展,促進了以物理機制為基礎的計算光學成像技術的發展。計算光學成像技術作為新型的成像手段,不僅推動了
    的頭像 發表于 08-23 06:25 ?345次閱讀
    什么是散射<b class='flag-5'>成像</b>技術?

    一種新型全光學復合場成像

    加州大學洛杉磯分校(UCLA)的研究人員在光學成像技術領域取得了一個重要的里程碑。他們開發出了一種新型全光學復合場成像儀,無需數字處理就能捕捉光場的振幅和相位信息。 這項創新有望給生物醫學成像
    的頭像 發表于 08-06 06:24 ?292次閱讀
    一種新型全<b class='flag-5'>光學</b>復合場<b class='flag-5'>成像</b>儀

    閃光科技高靈敏成像及燃燒診斷技術交流會在西北工業大學成功舉辦

    2024年6月18日下午,閃光科技在西北工業大學成功舉辦了“高靈敏成像及燃燒診斷技術交流會”。會議深入探討了最新的探測成像技術,聚焦高靈敏度
    的頭像 發表于 06-24 06:54 ?451次閱讀
    閃光科技高靈敏<b class='flag-5'>超</b>快<b class='flag-5'>成像</b>及燃燒診斷技術交流會在西北工業大<b class='flag-5'>學成</b>功舉辦

    深圳中科飛測科技股份有限公司榮獲“一種光學成像裝置”專利

    此項發明提供了一種光學成像裝置,能夠獲取物鏡瞳孔的共軛瞳孔,并將物鏡瞳孔與待檢物體進行成像,進而通過物鏡瞳孔的影像,在共軛瞳孔處對物鏡瞳孔進行空間濾波。具體實現方式如下:首先,將物鏡、中繼鏡、第一成像組件及第一拍攝設備共軸設置
    的頭像 發表于 05-10 10:16 ?432次閱讀
    深圳中科飛測科技股份有限公司榮獲“一種<b class='flag-5'>光學成像</b>裝置”專利

    平面光學元件在寬帶熱成像中的應用

    ,許多LWIR折射透鏡是由昂貴且供應有限的材料(如鍺)制成的。 下一代光學系統要求透鏡不僅比以往任何時候都更輕、更薄,而且要保持不妥協的圖像質量。這一需求促使人們大力開發超薄亞波長衍射光學元件,即
    的頭像 發表于 03-28 06:30 ?390次閱讀

    基于光子糾纏的自適應光學成像技術應用

    對引導星的依賴給顯微鏡成像細胞和組織等不含亮點的樣本帶來了問題。科學家們利用圖像處理算法開發了無引導星的自適應光學系統,但這些系統可能會因結構復雜的樣本而失效。
    發表于 03-11 11:29 ?566次閱讀
    基于光子糾纏的自適應<b class='flag-5'>光學成像</b>技術應用
    主站蜘蛛池模板: 婷婷五月久久丁香国产综合 | 国产呦精品一区二区三区网站 | 青柠在线观看免费全集 | 四虎成人影院 | 国产成人精品综合在线观看 | 亚洲免费观看视频 | 妈妈的朋友5在线观看免费完整版中文 | 成人国产AV精品久久久久 | 国产欧美国产综合第一区 | 97在线视频网站 | 动漫在线观看免费肉肉 | 亚洲国产精品VA在线看黑人 | 国产乱人视频在线观看 | 伊人久综合 | 天美传媒在线观看免费完整版 | 色婷婷国产精品视频一区二区 | 色偷偷男人天堂 | 久久黄色精品视频 | 毛片TV网站无套内射TV网站 | 亚洲在线国产日韩欧美 | 成人小视频在线观看 | 欧美日韩亚洲一区视频二区 | 老鸭窝毛片| 色色男_免费 | 真实处破女全过程完免费观看 | 性生生活大片又黄又 | 久久久青青 | 在线观看日本污污ww网站 | 文中字幕一区二区三区视频播放 | 久久精品观看影院2828 | 午夜家庭影院 | 亚洲免费高清视频 | 精品免费在线视频 | 一本道色播 | 一本之道加勒比在线观看 | 菠萝视频高清版在线观看 | 99久久伊人一区二区yy5o99 | 国产三级在线精品男人的天堂 | 偷上邻居熟睡少妇 | 撅高 自己扒开 调教 | 欧美乱子YELLOWVIDEO |