色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于英特爾開發(fā)套件的實時AI圖像處理技術的茶葉病害監(jiān)測物聯網系統(tǒng) | 開發(fā)者實戰(zhàn)

英特爾物聯網 ? 來源:英特爾物聯網 ? 2024-04-03 18:25 ? 次閱讀

01

項目背景

隨著茶葉產業(yè)的快速發(fā)展,茶葉的品質和安全性日益受到人們的關注。茶葉植株在生長過程中容易受到各種病蟲害的侵害,這不僅會影響茶葉的產量,還會嚴重影響茶葉的品質。傳統(tǒng)的茶葉病蟲害診斷主要依賴于農民的經驗判斷,這種方法不僅效率低,而且準確性差。隨著人工智能和圖像識別技術的迅速發(fā)展,開發(fā)一種快速、準確的茶葉病蟲害診斷方法成為了當務之急。

02

項目解決的主要問題

本項目開發(fā)了一種基于英特爾開發(fā)套件 - AIxBoard的計算機視覺深度學習技術的茶葉病蟲害監(jiān)測物聯網系統(tǒng)。系統(tǒng)預裝了英特爾OpenVINO工具套件,通過連接攝像頭實時捕捉茶葉葉片的圖像,并利用預先訓練好的深度學習模型對圖像進行分析,實現對茶葉病蟲害的自動識別和分類。

系統(tǒng)還包括一個前端展示界面,能夠實時顯示視頻流、預測結果和相關參數,為用戶提供直觀的操作和監(jiān)測體驗。本系統(tǒng)可以作為邊緣計算引擎,為病蟲害監(jiān)測提供強大支持。通過這個系統(tǒng),不僅可以提高茶葉病蟲害診斷的效率和準確性,還能為茶葉種植者提供科學的決策依據,從而提高茶葉的產量和品質,促進茶葉產業(yè)的可持續(xù)發(fā)展。本項目開源代碼庫:

Htreys/Tea_AIoT-System (github.com)

03

功能描述

1. 算法描述

本項目采用基于深度學習的卷積神經網絡(CNN)模型進行茶葉病蟲害的識別和分類。首先,通過攝像頭實時捕捉茶葉葉片的圖像,并將圖像進行預處理,包括縮放、裁剪和歸一化等操作,以滿足模型輸入的要求。接著,將預處理后的圖像輸入到預先訓練好的CNN模型中,模型通過多層卷積、池化和全連接層對圖像特征進行提取和學習,最后通過Softmax層輸出每個類別的概率分布,從而實現對茶葉病蟲害的自動識別和分類。為了提高模型的識別準確性,我在訓練階段采用了大量標注好的茶葉病蟲害圖像數據進行監(jiān)督學習,并通過數據增強、模型正則化等技術防止過擬合,確保模型具有良好的泛化能力。

數據集:

https://data.mendeley.com/datasets/j32xdt2ff5/2

2. 工程展示頁面功能描述

工程展示界面是一個基于Vue.js框架開發(fā)的前端應用,主要包括以下功能:

1

實時視頻流展示:

界面中嵌入了一個視頻播放器,能夠實時顯示從攝像頭捕捉到的茶葉葉片圖像,為用戶提供直觀的監(jiān)測體驗。

2

預測結果展示:

在視頻流的下方,展示了深度學習模型對當前幀圖像的預測結果,包括病蟲害的類別和相應的置信度,幫助用戶快速了解茶葉的健康狀況。

3

參數展示:

在界面的右側,展示了一些相關的參數和設置選項,如攝像頭的分辨率、幀率等,用戶可以根據需要進行調整。

4

歷史記錄:

界面還提供了一個歷史記錄功能,用戶可以查看過去一段時間內的監(jiān)測結果和相關參數,方便進行數據分析和回溯。

5

報警與通知:

當系統(tǒng)檢測到嚴重的病蟲害時,會通過界面彈窗或發(fā)送郵件等方式及時通知用戶,幫助用戶采取相應的防治措施。通過這個展示界面,用戶可以實時監(jiān)控茶葉的健康狀況,快速識別和處理病蟲害問題,提高茶葉的產量和品質。

3. OpenVINO開發(fā)工具功能描述

在本項目中,英特爾的OpenVINO工具套件提供了顯著的賦能和助力,極大地增強了項目的性能和效率。以下是OpenVINO在項目中的關鍵貢獻:

1

優(yōu)化的深度學習模型性能:

OpenVINO工具套件專為加速深度學習推理而設計,使得在英特爾開發(fā)套件AIxBoard上運行的深度學習模型得到了顯著的性能提升。這意味著更快的圖像處理和病蟲害識別速度,對于本項目實現實時監(jiān)測來說至關重要。

2

模型優(yōu)化和轉換:

本項目利用了OpenVINO提供了強大的模型優(yōu)化工具,把訓練好的深度學習模型轉換為優(yōu)化的格式,以適應邊緣計算的需求。實現了減少模型的大小,同時保持高精度,從而使模型更適合在資源受限的環(huán)境中運行,也提高了效率。

3

提高資源利用率:

OpenVINO通過優(yōu)化計算任務的分配,充分利用AIxBoard的處理能力,提高了整體的資源利用率。這包括對CPUGPU的高效使用,確保了系統(tǒng)的高性能運行。

4

實時數據處理和分析:

利用OpenVINO的高效推理能力,項目能夠實現對捕獲的茶葉圖像的實時處理和分析,及時檢測并報告病蟲害情況。

5

提升系統(tǒng)的可靠性和穩(wěn)定性:

OpenVINO的高效和優(yōu)化的運算不僅提高了性能,也增強了系統(tǒng)的可靠性和穩(wěn)定性,這對于長時間運行的監(jiān)測系統(tǒng)來說至關重要。

04

開發(fā)選型

本系統(tǒng)采用了英特爾開發(fā)者套件 - AIxBoard愛克斯板,搭載11代英特爾賽揚處理器N5105 2.0-2.9GHz (Jasper Lake)其芯片組帶了一顆GPU(iGPU),借助OpenVINO工具,能實現CPU+iGPU異構計算推理,為高效識別茶葉病害提供了有力的硬件保障。

系統(tǒng)支持:Ubuntu20.04 LTS

05

英特爾開發(fā)套件

AIxBoard對本項目的支持

1

高效的處理能力:

AIxBoard搭載的高性能處理器為本項目采用的深度學習模型的實時運算提供了強大的計算支持。這確保了圖像處理和病蟲害識別的高效率和準確性。

2

穩(wěn)定的長期運行:

AIxBoard的低功耗設計使得系統(tǒng)能夠在田間環(huán)境中長時間穩(wěn)定運行,提高了監(jiān)測的連續(xù)性和可靠性。

3

靈活的網絡連接:

AIxBoard提供的多種網絡連接選項,包括Wi-Fi藍牙,為數據的遠程傳輸和實時監(jiān)控提供了便利。

4

易于集成和擴展:

AIxBoard的設計易于與其他傳感器和設備集成,為項目的未來擴展提供了可能性。

5

支持先進的AI功能:

AIxBoard支持的AI和機器學習功能為項目的核心部分——智能病蟲害識別提供了技術保障。

06

技術細節(jié)

1. 技術棧描述:

1

深度學習框架: TensorFlow和Keras

用于構建和訓練深度學習模型,進行茶葉病蟲害的分類識別。

2

編程語言: Python

用于編寫深度學習模型、數據預處理、模型訓練和結果預測的腳本。

3

前端框架: Vue.js

用于構建用戶界面,展示實時監(jiān)測的視頻流和模型的預測結果。

4

后端框架: Flask

用于搭建服務端,處理前端發(fā)送的來的視頻數據幀,并調用深度學習模型進行預測,并將結果返回給前端。

5

數據庫: SQLite(或其他輕量級數據庫)

用于存儲歷史監(jiān)測數據,為用戶提供數據分析的基礎。

6

消息傳遞協議: MQTT

用于實現設備間的通信,將監(jiān)測數據發(fā)送到服務器,也可用于實現報警機制。

2. 技術設計

1

深度學習模型設計:

使用卷積神經網絡(CNN)進行圖像分類。

采用數據增強技術來增加訓練數據的多樣性,提高模型的泛化能力。

使用遷移學習,基于預訓練的大型網絡(如ResNet或VGG)進行微調,提高訓練效率和模型性能。

英特爾提供的開發(fā)板性能,可以加速深度學習模型的處理速度,提高系統(tǒng)的響應效率。

2

數據預處理:

對采集到的茶葉圖像進行裁剪、縮放和歸一化等預處理操作,使其符合模型輸入的要求。

3

實時檢測與預測:

利用攝像頭實時捕捉茶葉圖像,并將圖像發(fā)送到服務器。

服務器接收圖像數據,調用深度學習模型進行預測,并將結果返回給前端展示。

4

前端展示:

使用Vue.js構建單頁面應用(SPA),實時展示視頻流和預測結果。

提供用戶友好的界面,展示實時監(jiān)測的視頻流、模型的預測結果以及相關參數設置。

5

后端服務:

使用Flask搭建后端服務器,處理前端的請求,調用深度學習模型進行預測,并管理數據庫。

提供RESTful API,供前端調用。

6

數據庫設計:

存儲歷史監(jiān)測數據,包括圖像、預測結果和時間戳等信息

提供數據查詢接口,供用戶進行數據分析。

7

通信與報警:

使用MQTT協議實現設備間的通信。

當檢測到嚴重的病蟲害時,通過MQTT協議發(fā)送報警消息,及時通知用戶。通過這套技術棧和技術設計,項目實現了茶葉病蟲害的實時監(jiān)測和分類識別,提供了直觀的前端展示界面,并具備數據存儲和分析的能力,為用戶提供了一個全面、高效、易用的病蟲害監(jiān)測解決方案。

3. 項目架構圖

9565b794-f19a-11ee-a297-92fbcf53809c.png

07

創(chuàng)新點

1

模型通用性:

本項目開發(fā)的深度學習模型不僅僅局限于茶葉病蟲害的識別,其強大的特征提取能力使其具有較高的通用性。通過重新訓練或微調,該模型可以輕松適應其他植物、果實的病蟲害識別,甚至可以用于判斷果實的成熟度,拓寬了模型的應用范圍。

2

實時監(jiān)測與快速響應:

借助于攝像頭和深度學習模型的結合,本項目實現了對茶葉病蟲害的實時監(jiān)測,并能在檢測到病蟲害時立即進行分類和通知,大大減少了人工檢測的時間和精力,提高了病蟲害處理的效率。

3

易于推廣的解決方案:

本項目提供了一個完整的病蟲害監(jiān)測解決方案,包括數據采集、模型訓練和結果展示等環(huán)節(jié)。這套方案可以作為一個模板,根據不同植物和應用場景的需要進行定制和優(yōu)化,快速推廣到其他領域。

4

前端可視化展示:

通過構建前端可視化界面,用戶可以直觀地看到實時監(jiān)測的視頻流、模型的預測結果以及相關參數設置,提升了用戶體驗,同時也使得系統(tǒng)的操作更加直觀和便捷。

5

數據的積累與分析:

系統(tǒng)不僅僅提供實時監(jiān)測的功能,還能夠記錄歷史數據,為用戶提供數據分析的基礎。通過對歷史數據的分析,用戶可以更好地了解病蟲害的發(fā)生規(guī)律,為制定科學的防治措施提供依據。

6

靈活的報警機制:

系統(tǒng)提供了靈活的報警機制,當檢測到嚴重的病蟲害時,系統(tǒng)可以通過多種方式及時通知用戶,幫助用戶迅速采取措施,減少病蟲害帶來的損失。通過這些創(chuàng)新點,本項目不僅提高了病蟲害監(jiān)測的效率和準確性,還具有良好的推廣前景和應用價值,有望在智慧農業(yè)、園藝等領域發(fā)揮重要作用。

08

效果展示及描述

展示頁面效果圖:

9586ada0-f19a-11ee-a297-92fbcf53809c.png

1

實時視頻流展示區(qū)域:

視頻播放器的位置顯著,用戶能夠輕松查看實時圖像。

視頻可以提供非常直觀的用戶體驗。

2

預測結果區(qū)域:

“bird eye spot”旁邊的百分比數值(78.766%)清晰展示了模型對于當前圖像的預測結果和置信度,對于用戶了解茶葉病害情況很有幫助。

3

參數展示區(qū)域:

提供了調整攝像頭設置的滑塊(如分辨率和幀率),這讓用戶可以根據需要調整,非常貼心。

顯示計時器,可能是表示從監(jiān)測開始到當前的時間,這樣的實時數據對于監(jiān)控來說非常有用。

4

病害識別指標條:

以條形圖的形式展示各種病害的發(fā)生次數,用戶可以一目了然地看出哪種病害的發(fā)生的可能性最高,并及時做出決策來杜絕病害。

5

整體風格和布局:

界面風格統(tǒng)一,藍黑色基調符合工業(yè)和技術應用的通常設計。

布局合理,各功能區(qū)的分布均衡,遵循了“F”形閱讀規(guī)律。

6

界面風格:

確保了界面的響應性,以便在不同尺寸的屏幕和設備上都有良好的顯示效果。

考慮用戶操作的流程,確保從用戶角度出發(fā),簡化操作步驟,提升用戶體驗。

作者:浙江大學 劉兆隆

文章指導:羅雯,李翊瑋

審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯系本站處理。 舉報投訴
  • 英特爾
    +關注

    關注

    61

    文章

    9949

    瀏覽量

    171692
  • 物聯網
    +關注

    關注

    2909

    文章

    44557

    瀏覽量

    372760
  • 圖像處理技術

    關注

    0

    文章

    33

    瀏覽量

    10065
  • 人工智能
    +關注

    關注

    1791

    文章

    47183

    瀏覽量

    238247
  • OpenVINO
    +關注

    關注

    0

    文章

    92

    瀏覽量

    196

原文標題:基于英特爾開發(fā)套件的實時AI圖像處理技術的茶葉病害監(jiān)測物聯網系統(tǒng) | 開發(fā)者實戰(zhàn)

文章出處:【微信號:英特爾物聯網,微信公眾號:英特爾物聯網】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    使用英特爾哪吒開發(fā)套件部署YOLOv5完成透明物體目標檢測

    英特爾的哪吒(Nezha)開發(fā)套件是一款專為邊緣AI聯網應用設計的高性能計算平臺,搭載了英特爾
    的頭像 發(fā)表于 11-25 17:15 ?211次閱讀
    使用<b class='flag-5'>英特爾</b>哪吒<b class='flag-5'>開發(fā)套件</b>部署YOLOv5完成透明物體目標檢測

    【星閃派聯網開發(fā)套件體驗連載】智能交通燈

    感謝電子發(fā)燒友,感謝潤和軟件,提供星閃派聯網開發(fā)套件試用。 本次試用計劃: 用星閃派聯網開發(fā)套件
    發(fā)表于 10-05 13:00

    潤和軟件星閃派聯網開發(fā)套件資料+答疑帖

    星閃派聯網開發(fā)套件具有豐富的通信接口、開放性、模塊化、集成化等多個亮點;可基于星閃派聯網開發(fā)套件
    發(fā)表于 09-29 10:24

    OpenVINO? C++ 在哪吒開發(fā)板上推理 Transformer 模型|開發(fā)者實戰(zhàn)

    使用OpenVINO定制你的AI助手丨開發(fā)者實戰(zhàn)作者:王國強蘇州嘉樹醫(yī)療科技有限公司算法工程師指導:顏國進英特爾邊緣計算創(chuàng)新大使研揚科技針對邊緣AI
    的頭像 發(fā)表于 09-28 08:01 ?326次閱讀
    OpenVINO? C++ 在哪吒<b class='flag-5'>開發(fā)</b>板上推理 Transformer 模型|<b class='flag-5'>開發(fā)者</b><b class='flag-5'>實戰(zhàn)</b>

    【新品上線】星閃派聯網開發(fā)套件免費試用

    星閃派聯網開發(fā)套件具有豐富的通信接口、開放性、模塊化、集成化等多個亮點;可基于星閃派聯網開發(fā)套件
    發(fā)表于 08-16 09:34

    從運動員到開發(fā)者: 英特爾以開放式AI系統(tǒng)應對多重挑戰(zhàn)

    打造的生成式AI(GenAI)檢索增強生成(RAG)解決方案。該成果深度展示了英特爾如何通過基于英特爾?至強?處理器和英特爾??Gaudi
    的頭像 發(fā)表于 07-25 09:28 ?272次閱讀
    從運動員到<b class='flag-5'>開發(fā)者</b>: <b class='flag-5'>英特爾</b>以開放式<b class='flag-5'>AI</b><b class='flag-5'>系統(tǒng)</b>應對多重挑戰(zhàn)

    【xG24 Matter開發(fā)套件試用體驗】初識xG24 Matter開發(fā)套件

    設計,使用低有功電流和睡眠電流 ? 安全庫? ? AI/ML 硬件加速器 EFR32xG24 Dev Kit是一個緊湊、功能豐富的開發(fā)平臺。它為無線聯網產品的
    發(fā)表于 07-11 23:31

    基于T5L芯片的多功能聯網開發(fā)套件

    ——來自迪文開發(fā)者論壇本期為大家推送迪文開發(fā)者論壇獲獎開源案例——基于T5L芯片的多功能聯網開發(fā)套件。工程師充分運用了T5L1芯片的豐富外
    的頭像 發(fā)表于 06-14 08:13 ?697次閱讀
    基于T5L芯片的多功能<b class='flag-5'>物</b><b class='flag-5'>聯網</b><b class='flag-5'>開發(fā)套件</b>

    聯發(fā)科發(fā)布天璣AI開發(fā)套件,賦能終端生成式AI應用

    聯發(fā)科近日推出了全新的天璣AI開發(fā)套件,旨在為合作伙伴打造一站式解決方案,以加速終端生成式AI應用的開發(fā)。這款套件集合了四大核心模塊,為
    的頭像 發(fā)表于 05-10 11:19 ?591次閱讀

    英特爾開發(fā)套件『哪吒』在Java環(huán)境實現ADAS道路識別演示 | 開發(fā)者實戰(zhàn)

    本文使用來自OpenModelZoo的預訓練的road-segmentation-adas-0001模型。ADAS代表高級駕駛輔助服務。該模型識別四個類別:背景、道路、路緣和標記。硬件環(huán)境此文使用了英特爾開發(fā)套件家族里的『哪吒』(Nezha)
    的頭像 發(fā)表于 04-29 08:07 ?554次閱讀
    <b class='flag-5'>英特爾</b><b class='flag-5'>開發(fā)套件</b>『哪吒』在Java環(huán)境實現ADAS道路識別演示 | <b class='flag-5'>開發(fā)者</b><b class='flag-5'>實戰(zhàn)</b>

    英特爾面向AI PC軟件開發(fā)者與硬件供應商新增助力計劃

    英特爾公司近日宣布“AI PC加速計劃”再添兩項人工智能(AI)新舉措,即新增“AI PC開發(fā)者計劃”,并吸納獨立硬件供應商(IHV)加入“
    的頭像 發(fā)表于 04-02 10:09 ?333次閱讀

    英特爾宣布AI PC加速計劃新增兩項AI舉措

    首先,“AI PC 開發(fā)者計劃”面向軟件研發(fā)人員和獨立軟件開發(fā)商,為他們提供便捷的開發(fā)環(huán)境,助力加速大規(guī)模運用新型 AI
    的頭像 發(fā)表于 03-27 16:03 ?376次閱讀

    【轉載】英特爾開發(fā)套件“哪吒”快速部署YoloV8 on Java | 開發(fā)者實戰(zhàn)

    OpenVINO 工具套件基于OneAPI開發(fā),可以加快高性能計算機視覺和深度學習應用開發(fā)速度的工具套件,適用于從邊緣到云的各種英特爾計算平
    的頭像 發(fā)表于 03-23 08:05 ?551次閱讀
    【轉載】<b class='flag-5'>英特爾</b><b class='flag-5'>開發(fā)套件</b>“哪吒”快速部署YoloV8 on Java | <b class='flag-5'>開發(fā)者</b><b class='flag-5'>實戰(zhàn)</b>

    基于英特爾哪吒開發(fā)者套件平臺來快速部署OpenVINO Java實戰(zhàn)

    OpenVINO 工具套件基于OneAPI開發(fā),可以加快高性能計算機視覺和深度學習應用開發(fā)速度的工具套件,適用于從邊緣到云的各種英特爾計算平
    的頭像 發(fā)表于 03-21 18:24 ?1473次閱讀
    基于<b class='flag-5'>英特爾</b>哪吒<b class='flag-5'>開發(fā)者</b><b class='flag-5'>套件</b>平臺來快速部署OpenVINO Java<b class='flag-5'>實戰(zhàn)</b>

    AI PC釋放開發(fā)創(chuàng)意,英特爾人工智能創(chuàng)新應用大賽火熱報名中!

    上,英特爾攜手OEM、開發(fā)者、創(chuàng)作者等伙伴展示了AI?PC如何更快更好地支持PC端AI應用,為用戶帶來全新智能體驗。而最讓人期待的是,這些還只是PC邁向
    的頭像 發(fā)表于 12-29 14:05 ?434次閱讀
    <b class='flag-5'>AI</b> PC釋放<b class='flag-5'>開發(fā)</b>創(chuàng)意,<b class='flag-5'>英特爾</b>人工智能創(chuàng)新應用大賽火熱報名中!
    主站蜘蛛池模板: 999精品国产人妻无码系列| 亚洲一区二区三区乱码在线欧洲| 手机看片国产免费| 亚洲国产欧美国产综合在线| 亚洲熟妇无码乱子AV电影| 在线广播收听| 办公室的秘密2中文字幕| 国产精品亚洲精品日韩电影| 九九99亚洲精品久久久久| 牛牛在线精品视频| 小黄鸭YELLOWDUCK7596| 69亞洲亂人倫AV精品發布| 国产99九九久久无码熟妇| 久久超碰色中文字幕| 日韩免费一区二区三区在线| 一区二区三区无码高清视频| 哒哒哒高清视频在线观看| 美女PK精子小游戏| 在线亚洲色拍偷拍在线视频| 精品午夜久久影视| 亚洲裸舞 hd| 果冻传媒免费观看| 亚洲不卡视频| 国产午夜精品鲁丝片| 日本久久中文字幕精品| 99久久精品国产自免费| 久久丫线这里只精品| 亚洲AV永久无码精品澳门| 高清视频在线观看SEYEYE| 蜜芽在线影片| 中文字幕高清在线观看| 久久热精品18国产| 国产精品你懂得| 秋霞伦理机在线看片| 99久久re6热精品首页| 免费国产成人手机在线观看| 中文字幕精品在线观看| 九九久久精品| 一二三四高清中文版视频| 黑人性xxx| 亚洲精品乱码8久久久久久日本 |