色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

一文深度梳理AI算力芯片

路科驗證 ? 來源:投研實習生 ? 2024-04-24 15:13 ? 次閱讀

幾十年前,CPU 作為通用處理器幾乎處理所有計算任務,那個時代的顯卡有助于加快應用程序中圖形的繪制速度。但在今天ChatGPT引爆的人工智能iPhone時刻,GPU成為了整個行業最具主導地位的芯片之一。大家都在搶購GPU,龍頭企業英偉達也因此賺的盆滿缽滿。

在此前的文章中我們介紹了AI算力的主要載體數據中心IDC的商業模式和組成部分,并進一步走進服務器這個數據中心中主要負責計算的硬件。服務器中有處理器、內存、硬盤等零部件,其中最核心的負責計算的當屬處理器,也就是芯片。因此,今天我們繼續梳理AI算力芯片,看看為什么在當今AI時代GPU占據了主導地位以及我國目前的發展情況與相關企業。

產業鏈

從產業鏈說起,首先來看芯片在產業鏈中扮演的角色。這里從兩方面說,站在算力產業鏈角度,芯片屬于上游產品,正如我們在《AI服務器革命:硬件進化驅動人工智能新紀元》一文中提到,芯片與其它硬件組成服務器,也就是產業鏈中游,服務器又與其它設備共同組成下游的數據中心。

479d6f82-01ff-11ef-a297-92fbcf53809c.png

如果站在半導體產業鏈的角度看,那么芯片屬于中游。它的上游包括支撐集成電路設計和制造的 EDA 輔助設計工具和 IP 服務,半導體制造設備、芯片生產測試流程。產業鏈下游包括各類整機廠商、終端設備、網絡設備和應用系統等,其中最重要的是服務器、桌面和嵌入式系統等硬件設備廠商。

47bb1e74-01ff-11ef-a297-92fbcf53809c.png

由于全球化的不斷深入,半導體產業發生了多次區域轉移,分工不斷細化。可以將半導體的生產分為四個主要步驟:設計、制造、封裝、測試。在傳統的垂直整合制造商模式(IDM,即自己完成設計、制造、封裝測試等所有環節)基礎上誕生了著名的Fabless+Foundry模式,Fabless廠商是以美國為主的負責設計,而Foundry則是以中國臺灣為主的負責制造的廠商。兩種模式各有利弊,不過這屬于半導體產業鏈范疇的討論,我們在此不做贅述。

47cb4af6-01ff-11ef-a297-92fbcf53809c.png

CPU、GPU、ASICFPGA

半導體產品可以分為集成電路(芯片)、分立器件、光電器件傳感器,其中芯片進一步分為數字芯片和模擬芯片,數字芯片下還有邏輯芯片、微處理器和存儲芯片三類。我們所說到的算力芯片或AI芯片實際上指的都是邏輯芯片,廣義上可以是所有采用邏輯門的大規模集成電路,包括以 CPU、GPU 為代表的通用計算芯片、專用芯片(ASIC)和 FPGA,狹義上,AI芯片指針對大量數據進行訓練和推理設計的芯片。

47e44bdc-01ff-11ef-a297-92fbcf53809c.png

CPU

CPU是中央處理器(Central Processing Unit),是計算機的運算核心和控制核心。CPU包括運算器(算術邏輯單元ALU、累加寄存器、 數據緩沖寄存器、狀態條件寄存器)、控制器(指令寄存器IR、程序計數器PC、地址寄存器、 指令譯碼器ID、時序、總線、中斷邏輯控制)、高速緩沖存儲器(Cache)、內部數據總線 、控制總線、狀態總線及輸入/輸出接口等模塊。

48012810-01ff-11ef-a297-92fbcf53809c.png

CPU 的主要功能是解釋計算機指令以及處理計算機軟件中的數據,其運行程序時主要包括一下5個步驟:1)指令寄存器(IR)從存儲器或高速緩沖存儲器中獲取指令;2)指令譯碼器(ID)對指令進行譯碼,并將指令分解成一系列簡單的微操作;3)譯碼后的微操作通過控制單元發送給CPU內的運算器執行數學運算和邏輯決策,;4)執行某些指令時需要讀取或寫入數據到主存儲器,地址寄存器用于確定存儲器中數據的位置,而數據經過內部總線傳輸;5)指令執行完成后,結果會被寫回到CPU的寄存器或存儲器中,供后續指令使用。

我們可以將這個流程類比自己做數學題時的場景,從最開始的讀題(獲取指令)、審題(指令譯碼)到一步一步計算答案(執行運算),再將答案寫在草稿紙上(存儲結果)用于下一小問。對于CPU來說這整個過程是一個連續循環,稱為指令周期,包括獲取指令、譯碼、執行、訪問存儲器和寫回結果的步驟。人們用主頻來衡量以上一個指令周期被執行的速度(CPU性能),主頻是指CPU內部時鐘的頻率,通常以赫茲(Hz)為單位,1赫茲等于每秒鐘一個周期。此外,FLOPS(每秒執行多少浮點運算)也被用于衡量CPU性能。

在CPU的發展歷史中,為了進一步提升它的運算能力人們提出了多線程(Multithreading)和多核(Multi-core)的設計方法。多線程指的是程序可以同時執行多個任務,也就是電腦可以同時做不同的事。例如,一個線程可以處理用戶輸入,同時另一個線程可以執行后臺計算,還有一個線程可以處理網絡通信。即使一個線程被阻塞,其他線程仍然可以繼續工作,從而提高了整體的效率和程序的響應性。多核則是增加CPU內的處理單元,使CPU可以并行處理多個指令流。

48182592-01ff-11ef-a297-92fbcf53809c.png

可以按指令集和應用領域對CPU進行分門別類,指令集是 CPU 所執行指令的二進制編碼方法,是軟件和硬件的接口規范。按照指令集可分為 CISC復雜指令集和 RISC精簡指令集兩大類,在上一篇文章中做過詳細介紹,這里不再贅述。CPU 按照下游應用領域還可分為通用微處理器(MPU, Micro Processor Unit)和微控制器(MCU, Micro Controller Unit),MPU便是我們熟悉的應用于服務器、桌面(臺式機/筆記本)、超級計算機等中的CPU。MCU是用于控制類應用的低性能、低功耗CPU。MCU的主頻一般低于 100MHz,一般是用在智能制造、工業控制智能家居、遙控器、汽車電子、機器手臂的控制等。

4830cc78-01ff-11ef-a297-92fbcf53809c.png

從競爭格局上看,英特爾AMD占據了大部分市場份額,其中英特爾作為CPU的締造者擁有絕對主導地位。從服務器CPU角度看,2022年英特爾與AMD合計占到全球90%的市場份額,不過近兩年AMD不斷搶占英特爾份額。從MPU整體上看,英特爾占據半壁江山,移動設備端蘋果和高通分別擁有13%和9%的份額。從MCU上看則是日韓系廠商份額較多。

4848407e-01ff-11ef-a297-92fbcf53809c.png

48641236-01ff-11ef-a297-92fbcf53809c.png

GPU

作為通用處理器,以前幾乎所有的計算任務都由CPU處理,不過到了八十年代末九十年代初,越來越多的圖形渲染處理需求催生了GPU的誕生,黃仁勛正是在這一時期創立的英偉達,專注于GPU的研發與制造。

GPU是圖形處理器(Graphic Processing Unit),又稱為顯示芯片(顯卡),最初是作為專用處理器來輔助CPU進行圖像和圖形相關運算工作的。從結構上來說,CPU的設計是低延遲的串行計算模式,擁有少數強大的ALU算數邏輯單元高效的挨個完成每個任務。而GPU側重于并行計算(Parallel Processing),擁有大量的ALU可以同時處理大規模的簡單計算。簡單來說,CPU的工作模式好比一位博士單獨去解一道復雜的高數題,而GPU則如同一百名高中生一起計算加減、乘除法。

487e759a-01ff-11ef-a297-92fbcf53809c.png

CPU已經如此強大了,為什么還需要GPU呢,或者說為什么在圖形處理和如今的人工智能浪潮下為什么GPU這個以前CPU的小弟成為了王者呢?首先在圖像處理領域,圖片是由一個個像素點組成的,比如一張1080p的圖片實際上是由1920x1080= 207萬像素點組成,但是每個像素點的計算并不復雜。由CPU加載圖片時是一個一個的單獨運算每個像素點,而使用GPU的話則是并行計算,由多個ALU同時處理每個像素點,從而實現快速處理全部像素點。

489bb3e4-01ff-11ef-a297-92fbcf53809c.gif

在人工智能大模型中同理,大模型可以有各種不同結構,但其背后的本質都是基于神經網絡深度學習,它的核心運算需求并不高,主要就是累加和累乘的運算,但是由于模型參數巨大、網絡層數復雜,因此需要運用大規模并行計算,這也就是為什么GPU如今獨領風騷。

48c28e2e-01ff-11ef-a297-92fbcf53809c.gif

由黃仁勛于1993年創立的英偉達可謂是GPU的奠定者和締造者,1999年英偉達推出了被譽為世界上第一款真正的GPU的GeForce 256,并憑借此產品獲得巨大成功。然而,作為專用處理器,傳統 GPU 應用局限于圖形渲染計算,在面對非圖像并涉及大量并行運算的領域,比如 AI、加密解密、科學計算等則更需要通用計算能力。為了提高GPU的通用性,英偉達于2006年推出的CUDA開發環境構造了其強大的生態護城河,自此GPGPU(General Purpose GPU)時代開啟

4917b0fc-01ff-11ef-a297-92fbcf53809c.png

CUDA(Compute Unified Device Architecture,統一計算設備架構) 可以讓開發者能夠用類似 C 語言的方式編寫程序,讓 GPU 來處理計算密集型任務。簡單來說,CUDA平臺是英偉達提供給開發者的編程工具,包含了一系列工具函數,有各種功能,同時CUDA可以讓開發者調用成千上萬的 GPU 核心同時工作,進一步提高計算速度。隨著時間推移,CUDA被應用在包括物理化學、生物醫藥、人工智能等眾多行業領域,其開發者生態也不斷豐富,同時由于CUDA只適用于英偉達的GPU,它成為了英偉達主導GPU的殺手锏。類似于CUDA的還有針對AMD的GPU使用的ATIStream,以及兩款開源平臺ROCm和OpenCL,這兩者可實現不同生態GPU的相互遷移。

492bba8e-01ff-11ef-a297-92fbcf53809c.png

在GPU發展歷史上,除了CUDA平臺外,微架構迭代與芯片制程升級是單卡GPU性能提升的關鍵途徑。GPU 的微架構是用以實現指令執行的硬件電路結構設計,不同的微架構設計會對 GPU 的性能產生決定性的影響。以英偉達為例,從最初 Fermi 架構到現在的Hopper架構和最新的Blackwell架構,英偉達平均買兩年更新一次架構,每一階段都在性能和能效比方面得到提升,同時引入了新技術,如 CUDA、GPU Boost、RT 核心和 Tensor 核心等,作為行業第二的AMD也緊跟英偉達更新其微架構。

4943d42a-01ff-11ef-a297-92fbcf53809c.png

對比當前主流的頂級GPU英偉達H100和AMD的MI250X可以看出,二者在硬件層面上的差距并不大,真正能夠使英偉達維持80%市占率達的其實是軟件層面的CUDA平臺,由于多年以來眾多主要開發者都使用基于CUDA的英偉達GPU,其形成的廣泛生態和粘性極大的增加了進行更換廠商的總成本,同時這也給遠在大洋彼岸的國內廠商追趕英偉達造成更大的挑戰。因此英偉達不僅僅是我們印象中的賣芯片的硬件公司,它也是一家強大的軟件公司。

495ac978-01ff-11ef-a297-92fbcf53809c.png

4975dd44-01ff-11ef-a297-92fbcf53809c.png

ASIC

在GPGPU時代GPU已經具備了類似CPU的通用性,專用處理器中還剩下ASIC和FPGA兩款。ASIC (Application Specific Integrated Circuit,專用集成電路)是為了某種特定需求而專門定制的芯片。ASIC 的計算能力和計算效率都可以根據算法需要進行定制,因此與通用芯片相比具有體積小、功耗低、計算性能高等優勢。但是缺點也很明顯,ASIC只能針對特定的幾個應用場景,算法和流程變更可能導致 ASIC 無法滿足業務需求。

4994038c-01ff-11ef-a297-92fbcf53809c.png

由于目前對于芯片的需求爆發主要還是來自AI領域,針對AI計算場景設計的ASIC從性能、能效、成本均極大的超越了通用芯片,是GPU的潛在競爭對手。目前全球 ASIC 市場并未形成明顯的頭部廠商,由于 ASIC 需要定制且開發周期長,大多為云計算/互聯網等大廠有資金與實力進行研發,且僅當其定制化應用場景市場空間足夠大時量產ASIC才能實現豐厚利潤。目前市場上主流 ASIC 有 TPU 芯片、NPU 芯片、VPU 芯片以及 BPU 芯片,它們分別是由谷歌、寒武紀、英特爾以及地平線公司設計生產,預計未來將有更多諸如微軟、亞馬遜、百度、阿里等云計算巨頭加入定制自家的ASIC。

49a7a216-01ff-11ef-a297-92fbcf53809c.png

FPGA

除了ASIC外,FPGA (Field-Programmable Gate Array,現場可編程門陣列)也是一種專用芯片,其最大特點是現場可編程性。CPU、GPU以及各類 ASIC 芯片在制造完成后,其芯片的功能就已被固定,而 FPGA 芯片在制造完成后,用戶可以根據自己的實際需要,將自己設計的電路通過 FPGA 芯片公司提供的專用 EDA 軟件對 FPGA 芯片進行功能配置,從而將空白的 FPGA 芯片轉化為具有特定功能的集成電路芯片。FPGA 芯片由可編程的邏輯單元(Logic Cell,LC)、輸入輸出單元(Input Output Block,IO)和開關連線陣列(Switch Box,SB)三個部分構成。

49c2660a-01ff-11ef-a297-92fbcf53809c.png

2023 年全球 FPGA 市場規模有望達 94 億美元,且保持15%左右的增速。從競爭格局上看,被AMD收購的賽靈思Xilinx 約占全球 FPGA 市場份額 52%,Intel 旗下 Altera 約占 35%。

49eafcd2-01ff-11ef-a297-92fbcf53809c.png

中美情況對比

前面詳細介紹了主要四種處理器芯片的功能、市場空間和競爭格局,接下來進一步說說中國和美國在AI芯片上的差距。首先,無論是站在國家安全、自主可控的角度還是受美國卡脖子技術禁令影響的角度,國產自研替代雖然艱難但一定是未來最可靠甚至是唯一的出路

從算力、算法和應用層出發,中國廠商和美國同行相比都有一定差距。在算力端存在芯片性能及生態差距,在芯片的生產端核心環節如芯片的設計、流片等也均由海外主導;在算法端,海外在基礎研究方面較為領先,如谷歌發布底層架構 Transformer ;應用端,海外頭部應用多已成為行業標準,擁有較為良好的用戶基礎,有助于 LLM+產品的快速落地,如辦公領域的微軟 Office 產品。

4a02378a-01ff-11ef-a297-92fbcf53809c.png

不過算法和應用端的差距不大,而算力層面的差距是最關鍵的。一方面算力端的核心環節均受海外主導,很難繞開,而且海外頭部算力廠商圍繞自身產品形成了包含應用、算法的生態壁壘,更加難以突破。另一方面,算力處于基礎支撐地位,直接影響模型的落地和應用的推廣進度。美國政府為了限制中國AI的發展更是出臺政策禁止了美國企業將高端芯片賣給國內企業,自2022年以來美國已多次出臺出口限制法案,限制力度逐步提升。去年10月的最新法案中以總處理性能 TPP(Total Processing Performance,即計算速度*字節長度)和性能密度 PD(Performance Density,即每平方毫米的 TPP)為要求,TPP>4800 的芯片、TPP>1600 且 PD>5.92 的芯片屬于高性能芯片,不再被允許出口。

4a1aa108-01ff-11ef-a297-92fbcf53809c.png

在這個背景下,我們來對比下中美主要AI芯片發展進度。國內的算力產業整體上可分為三大體系:以鯤鵬+昇騰為核心芯片的Arm服務器華為系,以海光為核心芯片、中科曙光為整機廠的x86服務器中科院系,以飛騰為核心芯片、中國長城為整機廠的Arm服務器中電子系

4a3092ec-01ff-11ef-a297-92fbcf53809c.png

在CPU領域,國內企業經過多年發展與積累形成了海光信息、龍芯中科、華為、飛騰、兆芯和申威六大廠商齊頭并進的局面,其中華為和海光性能最好,可對標英特爾與AMD的頂級CPU產品,飛騰和申威的芯片則主要應用于國家超算中心如天河、神威。從三大運營商的采購情況也可以看出,2022年采購中國產CPU服務器占比達到37%,其中海光占比19.66%,華為鯤鵬占比17.41%

4a496ca4-01ff-11ef-a297-92fbcf53809c.png

4a661e80-01ff-11ef-a297-92fbcf53809c.png

4a873b6a-01ff-11ef-a297-92fbcf53809c.png

GPU方面,由于GPU領域英偉達占據絕對領導地位,國內廠商目前在硬件和生態上都有較大差距。國內GPU最強的是華為,昇騰310為推理芯片,昇騰910為訓練芯片。昇騰 910 芯片采用7nm制程,FP16 算力達到 320TFLOPS、INT8 算力達到 640TOPS,與 NVIDIA A100 80GB 版本旗鼓相當,組網集群上限達到18000張(英偉達A100為16000,H100為50000)。不過與英偉達H100和今年剛剛發布的B100相比存在1-2代差距。

4aa4e8c2-01ff-11ef-a297-92fbcf53809c.png

此外,海光信息基于GPGPU架構推出DCU深算產品,軟件生態完善兼容通用的“類 CUDA”環境,旗下產品DCUZ100 的關鍵性能指標實現FP6410.8TFlops,顯存32GB HBM2,也可對標英偉達A100和AMD的MI100單卡性能。

4ace581a-01ff-11ef-a297-92fbcf53809c.png

發展趨勢

最后來說說AI芯片的發展趨勢有哪些,由于未來應用于大模型推理的需求將遠超過訓練需求,AI芯片也朝著更高性能、更低功耗和更靠近邊緣和端側發展。在性能提升方面,單個處理器層面的提升主要來自過去幾十年都遵循的摩爾定律,也就是芯片制程的提升,以及設計層面的微架構迭代。然而當晶體管大小接近 1nm 左右時,與 0.1nm 的原子直徑尺寸量級接近,量子隧穿引起的晶體管漏電效應將愈發明顯,以至于影響芯片正常工作。微架構方面,英偉達于今年三月GTC大會上最新推出的Blackwell架構也展現出架構更新放緩的趨勢。

4ae0d5da-01ff-11ef-a297-92fbcf53809c.png

在這個背景下,單張GPU的性能已接近瓶頸,因此未來的發展必然聚焦于多張卡的聯合上。在芯片封裝層面,通過Chiplet和CoWos等先進封裝技術將多顆芯片與內存等模塊封裝在一起。在系統層面,通過卡間互聯、服務器間互聯以及數據中心集群間互聯等方式集合更多的GPU。

此外,隨著越來越多的推理需求出現,AI芯片也將越來越多的從云端轉移到邊緣和端側,也會出現更多低功耗的端側芯片,比如現在的自動駕駛、AI PC和AI手機等概念,都需要將算力直接部署到汽車、電腦或手機上。

4afd1c04-01ff-11ef-a297-92fbcf53809c.png


審核編輯:劉清
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 處理器
    +關注

    關注

    68

    文章

    19259

    瀏覽量

    229652
  • 半導體
    +關注

    關注

    334

    文章

    27290

    瀏覽量

    218086
  • 光電器件
    +關注

    關注

    1

    文章

    178

    瀏覽量

    18506
  • 人工智能
    +關注

    關注

    1791

    文章

    47183

    瀏覽量

    238255
  • GPU芯片
    +關注

    關注

    1

    文章

    303

    瀏覽量

    5804

原文標題:為什么是GPU?一文深度梳理AI算力芯片

文章出處:【微信號:Rocker-IC,微信公眾號:路科驗證】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    梳理:如何構建并優化GPU云中心?

    目前最常見的AI中心部署的GPU集群大小為 2048、1024、512 和 256,且部署成本隨 GPU 數量線性增長。本文將以相對折中的1024 GPU卡(H100)的規模為例展開分析。
    的頭像 發表于 11-15 11:59 ?319次閱讀
    <b class='flag-5'>一</b><b class='flag-5'>文</b><b class='flag-5'>梳理</b>:如何構建并優化GPU云<b class='flag-5'>算</b><b class='flag-5'>力</b>中心?

    企業AI租賃是什么

    企業AI租賃是指企業通過互聯網向專業的提供商租用所需的計算資源,以滿足其AI應用的需求。
    的頭像 發表于 11-14 09:30 ?494次閱讀

    GPU開發平臺是什么

    隨著AI技術的廣泛應用,需求呈現出爆發式增長。AI租賃作為
    的頭像 發表于 10-31 10:31 ?166次閱讀

    億鑄科技熊大鵬探討AI芯片的挑戰與解決策略

    在SEMiBAY2024《HBM與存儲器技術與應用論壇》上,億鑄科技的創始人、董事長兼CEO熊大鵬博士發表了題為《超越極限:大芯片的技術挑戰與解決之道》的演講,深入剖析了AI大模型
    的頭像 發表于 10-25 11:52 ?381次閱讀

    AI芯片供電電源測試利器:費思低壓大電流系列電子負載

    AI芯片作為驅動復雜計算任務的核心引擎,其性能與穩定性成為了決定應用成敗的關鍵因素。而在這背后,供電電源的穩定性和高效性則是保障AI
    的頭像 發表于 10-25 11:26 ?400次閱讀
    <b class='flag-5'>AI</b><b class='flag-5'>算</b><b class='flag-5'>力</b><b class='flag-5'>芯片</b>供電電源測試利器:費思低壓大電流系列電子負載

    體架構創新助力國產大AI芯片騰飛

    在灣芯展SEMiBAY2024《AI芯片與高性能計算(HPC)應用論壇》上,億鑄科技高級副總裁徐芳發表了題為《存體架構創新助力國產大
    的頭像 發表于 10-23 14:48 ?284次閱讀

    【「芯片 | 高性能 CPU/GPU/NPU 微架構分析」閱讀體驗】--全書概覽

    本帖最后由 1653149838.791300 于 2024-10-16 22:19 編輯 感謝平臺提供的書籍,厚厚的本,很有分量,感謝作者的傾力付出成書。 本書主要講芯片
    發表于 10-15 22:08

    名單公布!【書籍評測活動NO.43】 芯片 | 高性能 CPU/GPU/NPU 微架構分析

    試用評測資格! 前言 不知不覺中,我們來到個計算機科學飛速發展的時代,手機和計算機中各類便捷的軟件已經融入日常生活,在此背景下,硬件特別是強勁的芯片,對于軟件服務起到不可替代的支
    發表于 09-02 10:09

    大模型時代的需求

    現在AI已進入大模型時代,各企業都爭相部署大模型,但如何保證大模型的,以及相關的穩定性和性能,是個極為重要的問題,帶著這個極為重要的問題,我需要在此書中找到答案。
    發表于 08-20 09:04

    摩爾線程張建中:以國產助力數智世界,滿足大模型需求

    摩爾線程創始人兼CEO張建中在會上透露,為了滿足國內對AI的迫切需求,他們正在積極尋求與國內頂尖科研機構的深度合作,共同推動更大規模的AI
    的頭像 發表于 05-10 16:36 ?951次閱讀

    DPU技術賦能下AI基礎設施

    4月19日,在以“重構世界 奔赴未來”為主題的2024中國生成式AI大會上,中科馭數作為DPU新型基礎設施代表,受邀出席了中國智中心創新論壇,發表了題為《以網絡為中心的
    的頭像 發表于 04-20 11:31 ?842次閱讀

    圖看懂星河AI數據中心網絡,全面釋放AI時代

    華為中國合作伙伴大會 | 圖看懂星河AI數據中心網絡,以網強,全面釋放AI時代
    的頭像 發表于 03-22 10:28 ?751次閱讀
    <b class='flag-5'>一</b>圖看懂星河<b class='flag-5'>AI</b>數據中心網絡,全面釋放<b class='flag-5'>AI</b>時代<b class='flag-5'>算</b><b class='flag-5'>力</b>

    數據語料庫、算法框架和芯片AI大模型中的作用和影響

    數據語料庫、算法框架和芯片的確是影響AI大模型發展的三大重要因素。
    的頭像 發表于 03-01 09:42 ?1074次閱讀

    立足,聚焦AI!順網科技全面走進AI時代

    “立足,聚焦AI”,順網科技進軍AI時代的號角已被吹響。 1月18日,順網科技(300113.SZ)以“躍遷·向未來”為主題的戰略升
    的頭像 發表于 01-19 10:57 ?458次閱讀
    立足<b class='flag-5'>算</b><b class='flag-5'>力</b>,聚焦<b class='flag-5'>AI</b>!順網科技全面走進<b class='flag-5'>AI</b>智<b class='flag-5'>算</b>時代

    弘信電子與AI服務器合資,助力國產芯片落地

    此外,弘信電子近期在AI業務上取得了突破性進展,這并非源自本土化的積累,而是依賴于團隊敏銳的戰略眼光和強烈的創新動力。此次投資是弘信電子在AI
    的頭像 發表于 12-25 09:30 ?959次閱讀
    主站蜘蛛池模板: 微福利92合集| 无码乱人伦一区二区亚洲| 欧美亚洲天堂网| 青娱乐视觉盛宴国产视频| 十分钟视频影院免费| 亚洲VA欧美VA天堂V国产综合| 亚洲欧洲久久| 97超视频在线观看| 吃奶吸咪咪动态图| 国产亚洲精品视频在线网 | 国产亚洲视频在线观看| 久久6699精品国产人妻| 木凡的天空在线收听| 日韩男明星| 亚洲欧美国产视频| 69夫妇交友群| 国产超碰精久久久久久无码AV| 国内久久久久影院精品| 龙广在线收听| 天堂草原天黑黑| 又色又爽又黄gif动态视频| OLDMAN老头456 TUBE| 国产人妻麻豆蜜桃色精| 六月婷婷国产精品综合| 偷上邻居熟睡少妇| 在线欧美精品一区二区三区| 成年人视频在线免费观看| 国语精彩对白2021| 欧美黄色精品| 亚洲国产在线观看免费视频| 99精品电影一区二区免费看| 国产浮力草草影院CCYY| 乱辈通奷XXXXXHD猛交| 偷拍 拍自 欧美色区| 最近的2019中文字幕国语版| 高h乱一受多攻男男| 久久久97人妻无码精品蜜桃| 色偷偷亚洲天堂| 26uuu老色哥| 国产亚洲欧美高清在线| 欧美亚洲精品一区二三区8V|