色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

構(gòu)建高性能計算芯片

奇異摩爾 ? 來源:Semiengineering ? 2024-04-25 10:23 ? 次閱讀

本文編譯自:Semiengineering

全球領(lǐng)先的超大規(guī)模云數(shù)據(jù)中心公司——Amazon, Google, Meta, Microsoft, Oracle,Akamai——正在推出專門針對云計算的異構(gòu)多核架構(gòu),對整個芯片行業(yè)的高性能 CPU 開發(fā)產(chǎn)生了影響。

這些芯片都不太可能進行商業(yè)銷售。它們針對特定的數(shù)據(jù)類型和工作負載進行了優(yōu)化,設(shè)計預(yù)算龐大,但可以通過提高性能和降低功耗來實現(xiàn)合理化。目標是在更小的面積上容納更多的計算能力,同時降低冷卻成本,而實現(xiàn)這一目標的最佳途徑就是采用定制化架構(gòu)、緊密集成的微架構(gòu)和精心設(shè)計的數(shù)據(jù)流。

這一趨勢始于近十年前,當時 AMD 開始采用異構(gòu)架構(gòu)和加速處理單元,取代了過去的同質(zhì)多核 CPU 模式,但起步緩慢。此后,異構(gòu)架構(gòu)開始興起,緊隨為移動消費設(shè)備設(shè)計的腳步,這些設(shè)備需要處理非常緊湊的占地面積以及嚴格的功耗和散熱要求。

Quadric營銷副總裁 Steve Roddy 表示:“英特爾等行業(yè)巨頭的單片芯片幾乎在每個產(chǎn)品代碼中都配備了 AI NPU。” “當然,人工智能先驅(qū) NVIDIA 長期以來一直在其大獲成功的數(shù)據(jù)中心產(chǎn)品中混合使用 CPU、CUDA內(nèi)核和Tensor內(nèi)核。未來幾年向 chiplet 的轉(zhuǎn)變將徹底鞏固這一過渡,因為指定chiplet組合的系統(tǒng)購買者可以挑選為相關(guān)設(shè)計插座量身定制的計算和互連類型。"

這很大程度上歸因于物理學(xué)和由此產(chǎn)生的經(jīng)濟學(xué)。隨著擴展優(yōu)勢的縮小,以及先進封裝技術(shù)的成熟 --它允許在設(shè)計中添加更多的定制功能,而過去這些功能受限于掩膜尺寸--每瓦特和每美元性能的競爭已進入白熱化階段。

"西門子 EDA IC 部門市場總監(jiān) Neil Hand 說:"如今,每個人都在構(gòu)建自己的架構(gòu),尤其是數(shù)據(jù)中心企業(yè),而處理器架構(gòu)很大程度上取決于工作負載的情況。"與此同時,這些開發(fā)人員也在詢問加速的最佳途徑是什么,因為有很多方法可以做到這一點。你可以選擇使用具有多個內(nèi)核的并行路線,這在某些情況下行不通,但在另一些情況下卻很有效。與此同時,應(yīng)用對內(nèi)存帶寬的限制越來越大,因此你會發(fā)現(xiàn)一些高性能計算公司開始把所有精力都花在內(nèi)存控制器上。還有一些公司會說:'這實際上是一個分解問題,我們要走加速器路線,擁有獨立的內(nèi)核。'但我不認為存在一刀切的做法。"

Roddy 指出,這些新型超級芯片內(nèi)的 CPU 內(nèi)核仍然遵循高性能 CPU 設(shè)計的久經(jīng)考驗的原則——快速、deep pipelines,在追蹤指針方面極其有效——但這不再是設(shè)計團隊的唯一關(guān)注點。 “這些大型 CPU 現(xiàn)在與其他可編程引擎共享空間——GPU 和通用可編程 NPU,可加速人工智能工作負載,”他說。 “與大眾消費設(shè)備中高度專業(yè)化的 SoC 的一個顯著區(qū)別是,避免使用硬連線邏輯塊(加速器)來執(zhí)行人工智能工作負載中的視頻轉(zhuǎn)碼或矩陣加速等任務(wù)。為數(shù)據(jù)中心設(shè)計的設(shè)備需要保持可編程性,以響應(yīng)各種工作負載,而不僅僅是消費類設(shè)備中的單一已知功能。”

然而,所有這些都需要更多的分析,設(shè)計屆正在繼續(xù)推動流程中的更多步驟。 “無論是因為工具,還是通過仿真或虛擬原型,你都擁有了了解數(shù)據(jù)的工具。”Hand說。 “此外,該行業(yè)已經(jīng)發(fā)展壯大,其專業(yè)化程度足以證明所花費用的合理性。第一部分是為了降低制造新硬件的風(fēng)險,因為你有工具來了解情況,你不必為了安全而制造'一刀切'的產(chǎn)品。現(xiàn)在,市場已經(jīng)開始分化,它的重要性足以讓你花錢去做。此外,現(xiàn)在也有了這樣做的方法。現(xiàn)在,通過生態(tài)系統(tǒng)、技術(shù)和其他一切因素的綜合作用,競爭變得容易多了。對于高性能計算公司來說,最初的目標是:'我們只需獲得一個良好的平臺,讓我們可以按照自己的方式對其進行維度化,然后再放入一些加速器。所以我們開始看到人工智能加速器和視頻加速器,然后一些更深奧的公司開始追求機器學(xué)習(xí)。這意味著什么?這意味著他們需要非常高的 MAC 性能。他們會將處理器架構(gòu)聚焦于此,這就是他們的差異化之道。"

再加上RISC-V 和可重復(fù)使用的芯粒和硬 IP,架構(gòu)開始看起來與幾年前大為不同。"如果你看看現(xiàn)在的數(shù)據(jù)中心和數(shù)據(jù)中心中的整個軟件堆棧,在堆棧中添加一些東西并不像以前那樣困難,你必須重建整個數(shù)據(jù)中心。"如今變得重要的是進行系統(tǒng)級分析的能力。應(yīng)用的系統(tǒng)級協(xié)同設(shè)計已變得非常重要,而且由于高性能計算已不再像以前那樣容易獲得。這是一個帶輪子的數(shù)據(jù)中心。

許多人認為,應(yīng)該開發(fā)新的架構(gòu),以克服幾代 CPU 所面臨的內(nèi)存挑戰(zhàn)。"Fraunhofer IIS 自適應(yīng)系統(tǒng)工程部高效電子學(xué)部門主管 Andy Heinig 說:"對 AI/ML 的需求將加速開發(fā)新的特定應(yīng)用架構(gòu)的進程。"傳統(tǒng)的 CPU 如果能提供更好的內(nèi)存接口來解決內(nèi)存問題,就能成為這場革命的一部分。如果 CPU 能夠提供這種新的內(nèi)存架構(gòu),那么 AI/ML 加速器就能與 CPU 一起成為數(shù)據(jù)中心的最佳解決方案。然后,CPU 負責(zé)需要靈活性的經(jīng)典任務(wù),而加速器則為非常具體的任務(wù)提供最佳性能。"

例如,Arm 直接與多個超大規(guī)模企業(yè)合作開發(fā)基于 Neoverse 的計算解決方案,以實現(xiàn)高性能、定制靈活性以及強大的軟件和硬件生態(tài)系統(tǒng)。通過這種方式已生產(chǎn)出了公開發(fā)布的芯片,如 AWS Graviton 和 Nitro 處理器、谷歌的 Mt. Evans DPU、微軟 Azure 的 Cobalt 100、NVIDIA 的 Grace CPU Superchip 和阿里巴巴的倚天 710。

“我們從這些和其他設(shè)計合作伙伴那里學(xué)到了很多東西,”Arm基礎(chǔ)設(shè)施業(yè)務(wù)線產(chǎn)品管理高級總監(jiān) Brian Jeff 說道。 “我們塑造高性能 CPU 和平臺開發(fā)的主要方式之一是更深入地了解基礎(chǔ)設(shè)施工作負載,從而實現(xiàn)特定的架構(gòu)和微架構(gòu)增強,尤其是 CPU 管線的前端和 CMN 網(wǎng)狀結(jié)構(gòu)。"

但捕獲該工作負載并為其開發(fā)芯片架構(gòu)并不總是那么簡單。對于人工智能訓(xùn)練和推理來說尤其如此,因為它們可能會隨著算法的變化而變化。

"Synopsys公司接口IP首席產(chǎn)品經(jīng)理Priyank Shukla表示:"目前正在訓(xùn)練不同的模型,例如Meta公司公開的Llama模型和Chat GPT模型。"所有這些模型都有一個模式和一定數(shù)量的參數(shù)。以 GPT-3 為例,它有 1,750 億個參數(shù)。每個參數(shù)的寬度為 2 字節(jié),即 16 位。你需要在 2 個字節(jié)中存儲這么多信息--1750 億個參數(shù),相當于 3500 億字節(jié)的內(nèi)存。該內(nèi)存需要存儲在共享該模型的所有加速器中,而該模型需要放置在加速器的結(jié)構(gòu)中,參數(shù)需要放置在與該加速器相關(guān)的內(nèi)存中。因此,你需要一個能接收更大模型并對其進行處理的結(jié)構(gòu)。你可以以不同的方式實現(xiàn)該模型,即實現(xiàn)該算法的方式。有些工作可以串行方式進行,有些工作可以并行方式進行。以串行方式進行的工作需要與高速緩存保持一致,并將延遲降到最低。這種以串行方式進行的工作將在一個機架內(nèi)進行分工,以便將延遲降到最低。以并行方式進行的工作將通過擴展網(wǎng)絡(luò)在不同機架之間進行分配。我們看到系統(tǒng)人員正在創(chuàng)建這一模型和算法,并在定制硬件中加以實現(xiàn)。

985d1310-0235-11ef-a297-92fbcf53809c.png

圖 1:機器學(xué)習(xí)優(yōu)化的服務(wù)器機架。來源:新思科技

組裝各種處理元件并非易事。 Synopsys ASIP 工具產(chǎn)品經(jīng)理 Patrick Verbist 表示:“它們是異構(gòu)多核架構(gòu),通常是通用 CPU 和 GPU 的組合,具體取決于公司類型,因為他們偏愛其中之一。” 。 “還有具有固定功能的 RTL 加速器,它們混合在這些異構(gòu)多核架構(gòu)中。這些加速器運行的應(yīng)用程序負載類型通常包括數(shù)據(jù)操作、矩陣乘法引擎、激活函數(shù)、參數(shù)壓縮/解壓縮、圖的權(quán)重等。但所有這些事情之間的一個共同點與大規(guī)模的運營有關(guān)。通常,這些計算是在標準或自定義數(shù)據(jù)類型上完成的。許多處理架構(gòu)通常都支持 Int 16,但如果您只需處理 16 位數(shù)據(jù),您就不想浪費 32 位數(shù)據(jù)路徑中的 16 位。你必須定制它。因此,加速器不僅需要運行浮點 32 數(shù)據(jù)類型,還需要支持 int 8 和/或 int 16,可能是半精度 float、自定義 int 或自定義 float 類型的數(shù)據(jù)類型,并且功能單元(運算符)通常是向量加法器、向量乘法器、加法器樹和激活函數(shù)的組合。這些激活函數(shù)通常是超越函數(shù),例如指數(shù)或雙曲函數(shù)、平方根、大規(guī)模除法,但是是矢量化的并且具有單周期吞吐量要求,因為每個周期,您都希望對這些東西開始新的操作。對于此類加速器,在異構(gòu)性的影響下,我們看到許多客戶使用 ASIP(特定于應(yīng)用程序的指令處理器)作為該異構(gòu)空間中的塊之一。 ASIP 允許您自定義運算符,因此數(shù)據(jù)路徑和指令集僅以比常規(guī) DSP 更有效的方式執(zhí)行有限的操作集。”

DSP 通常不會被執(zhí)行,它的用途太通用了。另一方面,固定功能 RTL 可能不夠靈活,這就產(chǎn)生了這樣的空間:“是的,我們需要比固定功能 RTL 更靈活、但比通用 DSP 不太靈活的東西。”這就是 ASIP 發(fā)揮作用的地方。如果你看看 GPU,你會發(fā)現(xiàn) GPU 在某種程度上也是通用的。它必須支持各種工作負載,但不是所有工作負載。這就是 ASIP 發(fā)揮作用的地方,以支持靈活性和可編程性。您需要這種靈活性來支持一系列計算算法,以適應(yīng)不斷變化的軟件或 AI 圖形要求,以及 AI 算法本身不斷變化的要求。”

西門子的 Hand 認為計算工作量是一項艱巨的挑戰(zhàn)。“為了解決這個問題,垂直整合的公司正在以這種方式投資高性能計算,因為高性能計算與人工智能沒有太大不同,你只能處理你看到的數(shù)據(jù)模式,”Hand說。 “如果你是亞馬遜或微軟這樣的公司,那么你就可以獲得大量的跟蹤數(shù)據(jù),而無需窺探任何數(shù)據(jù),并且你知道機器的瓶頸在哪里。你可以使用這些信息并說,‘我們看到我們獲得了內(nèi)存帶寬,我們必須對此采取一些措施,或者這是一個網(wǎng)絡(luò)帶寬問題,或者,這是一個人工智能吞吐量問題,而我們正陷入這些領(lǐng)域.'這實際上與邊緣發(fā)生的挑戰(zhàn)沒有什么不同。邊緣的目標是不同的,我們經(jīng)常看著它說,‘我能擺脫什么?我不需要什么?或者,“我可以在哪里縮小功率范圍?”而在數(shù)據(jù)中心,您會問,‘我如何才能推送更多數(shù)據(jù),以及如何以不燒壞設(shè)備的方式做到這一點?隨著設(shè)備變得越來越大,我怎樣才能以可擴展的方式做到這一點?”

Hand 相信向多芯片的轉(zhuǎn)變將推動許多有趣的發(fā)展,并且已經(jīng)被 AMD 和 Nvidia 等公司所采用。 “現(xiàn)在您可以開始為這些高性能計算應(yīng)用程序提供一些有趣的即插即用組件,在很大程度上,您可以開始說,‘我用于該應(yīng)用程序的互連芯片是什么?該應(yīng)用程序的處理模具是什么?它在構(gòu)建標準計算機之間提供了一個中間立場,無需進行太多更改。我能做些什么?我可以放入不同的進程、不同的網(wǎng)卡、不同的 DIMM。作為云提供商,我可以做的事情是有限的,以實現(xiàn)差異化。另一方面,像 Microsoft 和 Azure 這樣的大型云提供商會說,‘我可以構(gòu)建自己的完整 SOC,做任何我喜歡做的事情。我可以去建造它。但你現(xiàn)在可以得到這個中等基礎(chǔ),比方說,你決定生物計算數(shù)據(jù)中心有市場,有足夠多的人進入這個領(lǐng)域,你可以賺一些錢。您可以組裝 3D IC 并使其在該環(huán)境中工作嗎?看看會發(fā)生什么將會很有趣,因為這將降低進入門檻。我們已經(jīng)看到它被蘋果、英特爾、AMD 和 Nvidia 等公司使用,作為一種在無需測試巨大芯片的情況下獲得更快旋轉(zhuǎn)速度和更多品種的方法,我認為這將產(chǎn)生更大的影響比人們意識到的高性能計算。當你開始將它們與環(huán)境的完整數(shù)字孿生之類的東西結(jié)合起來時,你可以開始了解環(huán)境中的工作負載,了解瓶頸,然后嘗試不同的分區(qū),然后下推。”

Arm 的 Jeff 還發(fā)現(xiàn)數(shù)據(jù)中心芯片架構(gòu)正在發(fā)生變化,以適應(yīng) AI/ML 功能。 “CPU 上的推理非常重要,我們看到我們的合作伙伴利用我們的 SVE 管道、矩陣數(shù)學(xué)增強功能和數(shù)據(jù)類型來運行推理。我們還看到人工智能加速器通過高速相干接口的緊密耦合開始發(fā)揮作用,并且 DPU 正在擴展其帶寬和智能以將節(jié)點連接在一起。”

多模塊不可避免
芯片行業(yè)清楚地意識到,對于許多計算密集型應(yīng)用來說,單芯片解決方案已變得不切實際。過去十年的一個大問題是,多芯片解決方案的轉(zhuǎn)變何時才會成為主流。 Synopsys 研發(fā)總監(jiān) Sutirtha Kabir 表示:“整個行業(yè)正處于一個拐點,你無法再回避這個問題了。” “我們在后臺談?wù)撃柖珊汀甋ysMoore’,但設(shè)計人員必須在 CPU 和 GPU 中添加更多功能,但由于光罩尺寸限制、產(chǎn)量限制以及所有這些限制,他們根本無法做到這一點芯片。多芯片芯片在這里是不可避免的,這帶來了一些有趣的考慮。第一,拿一張紙并將其折疊。這基本上就是多芯片的一個例子。你拿一個芯片,把它折疊起來,如果你能巧妙地設(shè)計它,你可以認為你實際上可以大大縮短時序,而不是有很長的時序路徑。如果你從頂部芯片到底部芯片,你所經(jīng)歷的可能只是芯片中的少量布線,但它們大多是凸塊到凸塊或鍵合到凸塊。”

多芯片設(shè)計所面臨的挑戰(zhàn)包括:要弄清楚有多少條路徑需要同步、時序是應(yīng)該放在兩個芯片之間還是應(yīng)該單獨關(guān)閉、L1 是應(yīng)該放在頂部芯片還是底部芯片上--以及是否可以增加 L4。

Kabir解釋說:"從三維角度來看,現(xiàn)在的樓層規(guī)劃變得非常有趣。"你可以把一棟單層房屋改建成三層或四層。但隨之而來的還有其他設(shè)計挑戰(zhàn)。你不能再忽視散熱問題了。散熱曾經(jīng)是印刷電路板(PCB)的事情,而現(xiàn)在系統(tǒng)設(shè)計師們認為這些芯片非常熱。黃仁勛最近在 SNUG 上說,你把室溫的水從一端放進去,另一端就會變成按摩浴缸的溫度。他是在開玩笑,但事實是,從溫度的角度來看,這些芯片的溫度很高,如果你在平面規(guī)劃時不考慮到這一點,你的處理器就會被燒毀。這意味著你必須更早地開始這樣做。在三維平面規(guī)劃方面,當涉及到工作負載時,你如何知道自己已經(jīng)分析了多芯片的不同工作負載,并確保即使在沒有網(wǎng)表的情況下也能考慮到紅外、熱和時序等關(guān)鍵影響?我們稱之為零網(wǎng)表階段。這些考慮因素都變得非常有趣,因為你再也無法避免做多芯片,所以從代工廠的角度、從 EDA 的角度,這些都是生態(tài)系統(tǒng)的前沿和中心,而設(shè)計人員則處于中間位置。

與數(shù)據(jù)中心芯片的熱問題相關(guān)的是低功耗設(shè)計

"這些數(shù)據(jù)中心耗電量巨大,"Ansys 產(chǎn)品營銷總監(jiān) Marc Swinnen 說。"我當時正在舊金山參加 ISSCC,我們的展臺就在英偉達公司旁邊,英偉達公司正在展示其人工智能訓(xùn)練箱--一個裝有八個芯片、大量風(fēng)扇和散熱片的大箱子。我們問它的耗電量有多大,他們說:'哦,最高時有 1 萬瓦,但平均也有 6000 瓦。'功率真是越來越瘋狂了。

Arm公司的Jeff也認為,應(yīng)對數(shù)據(jù)中心芯片新挑戰(zhàn)的最佳方法是采用完整的系統(tǒng)方法,包括指令集架構(gòu)、軟件生態(tài)系統(tǒng)和特定優(yōu)化、CPU微架構(gòu)、結(jié)構(gòu)、系統(tǒng)內(nèi)存管理和中斷控制,以及封裝內(nèi)和芯片外I/O。"完整的系統(tǒng)方法使我們能夠與合作伙伴合作,根據(jù)現(xiàn)代工作負載和工藝節(jié)點定制 SoC 設(shè)計,同時利用基于chiplet的設(shè)計方法"。

這種定制芯片設(shè)計方法使數(shù)據(jù)中心運營商能夠優(yōu)化其電力成本和計算效率。"Jeff 說:"我們 Neoverse N 系列的高效率使每個插槽的內(nèi)核數(shù)從 128c 到 192c 甚至更高。"這些相同的 N 系列產(chǎn)品可以在更小的空間內(nèi)擴展到 DPU 和 6g L2 設(shè)計以及邊緣服務(wù)器。我們的 V 系列產(chǎn)品面向云計算,具有更高的每線程性能和更高的矢量性能(用于人工智能推理和視頻轉(zhuǎn)碼等工作負載),同時還能提供高效率。加速器附件的廣泛選擇使我們的合作伙伴能夠在為其工作負載量身定制的 SoC 中將定制處理和云原生計算正確地結(jié)合在一起。"

結(jié)論

鑒于高性能計算的演進特性,特別是由于數(shù)據(jù)中心的優(yōu)化方式涉及多個不同方面,所有這一切的最終結(jié)果幾乎都無法預(yù)測。" Hand表示:"在網(wǎng)絡(luò)應(yīng)用爆發(fā)之初,人們開始在數(shù)據(jù)中心內(nèi)進行南北向和東西向路由選擇,這改變了所有的網(wǎng)絡(luò)交換架構(gòu),因為這是一大瓶頸。"這導(dǎo)致了對數(shù)據(jù)中心的整體重新思考。類似的事情也發(fā)生在內(nèi)存方面,當你開始集成光學(xué)技術(shù)和一些更智能的內(nèi)存時,你會發(fā)現(xiàn)這將會是非常有趣的事情。

Hand 提到了幾年前的一次英特爾開發(fā)者大會,當時該公司解釋了如何利用硅光子學(xué)中的表面發(fā)射光學(xué)技術(shù)將內(nèi)存與數(shù)據(jù)中心機架中的存儲分離開來。"他說:"他們有一個統(tǒng)一的內(nèi)存結(jié)構(gòu),可以在服務(wù)器之間共享,也可以從不同的服務(wù)器分配內(nèi)存。"因此,數(shù)據(jù)中心的拓撲結(jié)構(gòu)開始變得非常有趣。即使在機架中,你看英偉達的人工智能系統(tǒng)結(jié)構(gòu)也不像傳統(tǒng)的服務(wù)器機架。最大的變化是,人們可以看到它,如果有市場,你就可以構(gòu)建它。我們一直認為,架構(gòu)的關(guān)鍵在于核心是否快速。我們從'內(nèi)核快不快'變成了'我有足夠的內(nèi)核嗎'。但問題遠不止于此。一旦你開始打破馮-諾依曼架構(gòu),開始使用不同的內(nèi)存流,開始關(guān)注內(nèi)存內(nèi)計算,它就會變得非常酷。然后你會說,'高性能計算到底意味著什么?

本文編譯自:Semiengineering 特別鳴謝!

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 芯片
    +關(guān)注

    關(guān)注

    455

    文章

    50714

    瀏覽量

    423138
  • cpu
    cpu
    +關(guān)注

    關(guān)注

    68

    文章

    10854

    瀏覽量

    211578
  • soc
    soc
    +關(guān)注

    關(guān)注

    38

    文章

    4161

    瀏覽量

    218162
  • 異構(gòu)多核
    +關(guān)注

    關(guān)注

    0

    文章

    6

    瀏覽量

    6920
  • 奇異摩爾
    +關(guān)注

    關(guān)注

    0

    文章

    49

    瀏覽量

    3399

原文標題:構(gòu)建高性能計算芯片

文章出處:【微信號:奇異摩爾,微信公眾號:奇異摩爾】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    FPGA構(gòu)建高性能DSP

      FPGA的方案選擇  幸運的是,需要高性能DSP功能的便攜式設(shè)備設(shè)計者還有其它選擇。最近FPGA開始達到了應(yīng)用所要求的成本競爭力。優(yōu)選的FPGA方案可用來處理計算量繁重的高端DSP算法,同時還可
    發(fā)表于 02-17 11:21

    高性能計算機的發(fā)展歷史是怎樣的?

    高性能計算機的發(fā)展史高性能計算機的內(nèi)容高性能計算機的應(yīng)用高性能計算機的現(xiàn)狀高性能計算機的應(yīng)用領(lǐng)域高性能
    發(fā)表于 09-10 10:42

    HPC高性能計算知識介紹

    HPC高性能計算知識 異構(gòu)并行計算
    發(fā)表于 05-29 17:45

    高性能計算軟件具有哪些缺陷?

    談到高性能計算,很多人都會想到那些每秒可以運行百萬億次、千萬億次計算的超級計算機,如最近炒得很火爆的“天河一號”、“曙光6000“等,但很少有人會想到上面跑的軟件。其實,硬件只是基礎(chǔ),
    發(fā)表于 08-30 06:35

    什么是高性能計算

    什么是高性能計算 高性能計算(HighPerformanceComputing)是計算機科學(xué)的一個分支,主要是指從體系結(jié)構(gòu)、并行算法和軟件
    發(fā)表于 05-24 23:29 ?4566次閱讀

    英特爾將為高性能計算研制“超級芯片

    英特爾本周稱,它正在投資研發(fā)適用于高性能計算(hpc)系統(tǒng)的“超級芯片”,公司希望能夠以此提升其在超級計算領(lǐng)域的聲望。
    發(fā)表于 04-02 11:53 ?965次閱讀

    高性能計算發(fā)展與應(yīng)用

    高性能計算發(fā)展與應(yīng)用,感興趣的可以看看。
    發(fā)表于 03-24 17:12 ?0次下載

    計算高性能計算的區(qū)別及聯(lián)系

    近年來,隨著人工智能、AI智藥等科技領(lǐng)域的火熱,以及阿里云、騰訊云、華為云等互聯(lián)網(wǎng)大廠在各種場景下的成功應(yīng)用。高性能計算、云計算這類科技領(lǐng)域的詞匯也也逐漸進入人們的日常生活。那么,什么是云計算
    發(fā)表于 06-26 14:30 ?3434次閱讀

    鯤鵬Validated認證幫助密碼模塊構(gòu)建全面的高性能密碼計算服務(wù)

    此次通過鯤鵬Validated認證的基于鯤鵬920可信執(zhí)行環(huán)境的密碼模塊,幫助密碼模塊構(gòu)建了全面的高性能密碼計算服務(wù)。平臺使用鯤鵬應(yīng)用使能套件BoostKit進行全棧優(yōu)化,采用鯤鵬BoostKit的SecGear框架、畢昇JDK
    的頭像 發(fā)表于 10-10 11:22 ?2455次閱讀

    使用 PWM 技術(shù)構(gòu)建高性能流量變送器

    使用 PWM 技術(shù)構(gòu)建高性能流量變送器
    發(fā)表于 10-31 08:23 ?0次下載
    使用 PWM 技術(shù)<b class='flag-5'>構(gòu)建</b><b class='flag-5'>高性能</b>流量變送器

    什么是HPC(高性能計算)?

    高性能計算 (High Performance Computing,又叫HPC、超級計算) 是指比傳統(tǒng)計算機和服務(wù)器提供更高馬力聚合計算能力
    的頭像 發(fā)表于 11-01 11:47 ?2.8w次閱讀

    芯品# 高性能計算芯片

    (LSE:AWE)是全球技術(shù)基礎(chǔ)設(shè)施高速連接和計算芯片的全球領(lǐng)導(dǎo)者,與Arm合作開發(fā)基于Arm ? Neoverse?計算子系統(tǒng)(CSS)的高級計算
    的頭像 發(fā)表于 06-27 10:28 ?6977次閱讀

    計算廠家使用WDS分布式存儲構(gòu)建高性能超融合一體機

    計算廠家使用WDS分布式存儲構(gòu)建高性能超融合一體機
    的頭像 發(fā)表于 09-23 09:57 ?237次閱讀
    云<b class='flag-5'>計算</b>廠家使用WDS分布式存儲<b class='flag-5'>構(gòu)建</b>其<b class='flag-5'>高性能</b>超融合一體機

    AI高性能計算平臺是什么

    AI高性能計算平臺不僅是AI技術(shù)發(fā)展的基石,更是推動AI應(yīng)用落地、加速產(chǎn)業(yè)升級的重要工具。以下,是對AI高性能計算平臺的介紹,由AI部落小編為您整理分享。
    的頭像 發(fā)表于 11-11 09:56 ?180次閱讀
    主站蜘蛛池模板: 91综合精品网站久久| 无码AV毛片色欲欧洲美洲| 嗯啊好爽视频| 欧美巨大xxxx做受孕妇视频| 男人扒开添女人屁股| 男人的天堂黄色片| 欧美午夜福利主线路| 色狗av影院| 亚洲男人在线观看| 最新高清无码专区在线视频| 99久久人妻无码精品系列性欧美| 背着老婆爆操性感小姨子| 国产精品久久久久成人免费| 极品少妇高潮啪啪无码吴梦| 美女露出乳胸扒开尿口| 日韩欧美一级| 亚洲欧美精品一中文字幕| 97超碰免费人妻中文| 泰国淫乐园实录| 思思久久99热只有频精品66| 性XXXXX搡XXXXX搡景甜| 在线高清电影理论片4399| A国产一区二区免费入口| 国产成人免费手机在线观看视频| 换脸国产AV一区二区三区| 男男h开荤粗肉h文1v1| 四虎永久在线精品免费A| 影音先锋男人av橹橹色| 补课H湿 1V1 PLAY| 好男人好资源在线观看| 欧美 国产 日产 韩国 在线| 午夜A级理论片左线播放| 56prom在线精品国产| 国产精品久久久久久久久免费下载 | 玩两个少妇女邻居| 伊人久久大香线蕉影院95| 不戴套挺进人妻怀孕| 久久精品国产欧美日韩99热| 日本久久精品毛片一区随边看| 亚洲一区高清| 俄罗斯14一18处交|