一、引 言
內(nèi)蒙古地處祖國(guó)北部邊疆,擁有草原、森林、荒漠、沙漠、裸地等多種生態(tài)類型,是我國(guó)北方面積最大的生態(tài)功能區(qū),承擔(dān)著筑牢祖國(guó)北方生態(tài)安全屏障的重要使命,必須把保護(hù)草原作為生態(tài)系統(tǒng)保護(hù)的首要任務(wù),不斷加強(qiáng)草原退化、荒漠化防治工作。草地生態(tài)系統(tǒng)具有保護(hù)環(huán)境、維護(hù)生態(tài)平衡、調(diào)節(jié)氣候變化和防止水土流失等方面的功能,擁有較強(qiáng)的碳儲(chǔ)蓄、碳循環(huán)能力和不可替代的生態(tài)價(jià)值及經(jīng)濟(jì)社會(huì)效益。
近年來(lái),由氣候變化及人類活動(dòng)等多種因素引起的草地退化,導(dǎo)致荒漠化草原植被區(qū)域稀疏、下墊面土壤裸露面積增加,進(jìn)而引發(fā)生態(tài)環(huán)境持續(xù)惡化,生物多樣性明顯下降,畜牧業(yè)發(fā)展受到影響。此外,草原退化嚴(yán)重影響了草原生態(tài)系統(tǒng)的固碳能力,造成草地再生能力下降。草原退化已成為世界性生態(tài)問(wèn)題之一,加強(qiáng)草原退化調(diào)查已成為草地工作者關(guān)注和研究的熱點(diǎn)問(wèn)題。
荒漠化草原地物主要包括植被和裸土兩類地物,植被生長(zhǎng)低矮稀疏、裸土呈碎片化分布,二者分界不清晰、不規(guī)則,對(duì)數(shù)據(jù)的光譜分辨率、空間分辨率、數(shù)據(jù)分析和識(shí)別分類方法提出更高要求。草原退化調(diào)查監(jiān)測(cè)須獲取客觀準(zhǔn)確的實(shí)測(cè)數(shù)據(jù),無(wú)人機(jī)搭載高光譜成像儀進(jìn)行低空遙感,是荒漠化草原地物分類的重要手段,可提供地物精細(xì)分類所需的理想遙感數(shù)據(jù),充分發(fā)揮出兩種設(shè)備納米級(jí)光譜分辨率與厘米級(jí)空間分辨率相結(jié)合的雙重優(yōu)勢(shì),具有數(shù)據(jù)分辨率高、靈活機(jī)動(dòng)的特點(diǎn)。
——續(xù)——
五、地面高光譜遙感數(shù)據(jù)反射率光譜分析
5.3 陰影區(qū)地物反射率光譜曲線及分析
地勢(shì)起伏、地物間相互遮擋、物體投影等均可在荒漠化草原形成陰影,遙感圖像上普遍存在黑色的陰影區(qū)域,陰影區(qū)域的地物光譜發(fā)生改變,對(duì)荒漠化草原植被信息提取造成干擾,本研究對(duì)陰影區(qū)域植被與鼠洞進(jìn)行反射率光譜曲線提取與光譜特征分析。
5.3.1 陰影區(qū)域植被
提取荒漠化草原陰影區(qū)域內(nèi)植被反射率光譜曲線如圖 1 所示,可以發(fā)現(xiàn)藍(lán)谷、綠峰、紅谷、近紅外高反射率平臺(tái)等綠色植被光譜特征被削弱,但紅邊特征和近紅外反射率波段的水分吸收谷仍表現(xiàn)出明顯的特征,近紅外反射率最高值為 4%。
圖1陰影區(qū)域植被反射率光譜曲線
5.3.2 陰影區(qū)域鼠洞
荒漠化草原上容易形成鼠害,鼠洞是常見(jiàn)的一種陰影區(qū)域,鼠洞特點(diǎn)是不存在生長(zhǎng)的綠色植被,光譜受裸土影響較大。提取陰影區(qū)域鼠洞反射率光譜曲線如圖2所示,可以看出鼠洞反射率整體較低,在近紅外波段最高值約為 7%,鼠洞反射率光譜曲線在可見(jiàn)光波段呈現(xiàn)平緩增長(zhǎng)的一條直線,在近紅外波段突然上升形成一個(gè)較窄平臺(tái)。
圖2 陰影區(qū)域鼠洞反射率光譜曲線
5.4 光照區(qū)植被反射率光譜曲線及分析
荒漠化草原植物屬于抗旱的稀疏植被類型,具有單株生長(zhǎng)、葉片狹小細(xì)長(zhǎng)、多呈針刺狀的特點(diǎn),采集單種植物冠層高光譜數(shù)據(jù),選擇四種荒漠化草原植物(短花針茅、冷蒿、櫛葉蒿、無(wú)芒隱子草)進(jìn)行地面高光譜數(shù)據(jù)采集。高光譜遙感圖像中植被光譜特征較弱,分類難度較大。利用高光譜遙感豐富的光譜信息,探索一種光譜變換方法用于區(qū)分荒漠化草原地物間光譜的細(xì)微差別。
5.4.1 原始反射率光譜曲線及分析
經(jīng)過(guò)數(shù)據(jù)篩選和反射率校正,在圖像數(shù)據(jù)上運(yùn)用多點(diǎn)平均法分別求得四種植物的反射率平均光譜曲線作為該種植物的原始反射率光譜曲線,圖3 為以上四種植物的原始反射率光譜曲線,可以看出四種植物原始光譜反射率曲線形態(tài)基本相似,原始反射率光譜曲線均存在藍(lán)谷、綠峰、紅谷、近紅外反射平臺(tái)、近紅外水分吸收谷,各特征參數(shù)位置相近,通過(guò)統(tǒng)計(jì)原始反射率光譜曲線關(guān)鍵位置光譜信息,發(fā)現(xiàn)利用原始反射率光譜曲線難以區(qū)分四種植物。
圖3 四種植物原始反射率光譜曲線
四種植物(短花針茅、冷蒿、櫛葉蒿、無(wú)芒隱子草)的原始反射率光譜數(shù)據(jù)均較低,在近紅外波段有明顯差異,統(tǒng)計(jì)近紅外波段反射率數(shù)值如下:短花針茅為43.705%,冷蒿為 39.234%,櫛葉蒿為 29.562%,無(wú)芒隱子草近紅外波段反射率光譜數(shù)值最高為 50.347%,在紅邊出現(xiàn)的位置存在微弱差別,且在近紅外波段水分吸收谷區(qū)間內(nèi)存在較大差異。
5.4.2 一階微分光譜曲線及分析
由于四種植物原始反射率光譜曲線相似度較高,為獲得植物間細(xì)微的光譜差異,采用一階微分光譜變換獲得四種植物的一階微分光譜曲線,如下圖4 所示,可以看出四種植物的一階微分光譜曲線整體走勢(shì)基本相似。
圖4 四種植物一階微分光譜曲線
通過(guò)分析短花針茅、冷蒿、櫛葉蒿、無(wú)芒隱子草的一階微分光譜特征相似程度,發(fā)現(xiàn)在可見(jiàn)光波段短花針茅和冷蒿相似度較高,櫛葉蒿和無(wú)芒隱子草在 400~672nm內(nèi)的波形相似,短花針茅和無(wú)芒隱子草在 400~700nm 內(nèi)的波形相似,短花針茅和櫛葉蒿在 400~555nm 內(nèi)的波形相似,冷蒿和無(wú)芒隱子草在 400~674nm 內(nèi)的波形相似,冷蒿與櫛葉蒿在 400~670nm 內(nèi)的波形相似。統(tǒng)計(jì)四種植物光譜特征三邊參數(shù)如表 1 所示。
表1 四種植物三邊參數(shù)
紅邊位置從前到后依次為:櫛葉蒿、無(wú)芒隱子草、短花針茅、冷蒿,紅邊幅值由大到小依次為:無(wú)芒隱子草、短花針茅、冷蒿、櫛葉蒿,紅邊面積由大到小依次為:無(wú)芒隱子草、短花針茅、冷蒿、櫛葉蒿,統(tǒng)計(jì)黃邊位置時(shí)發(fā)現(xiàn)短花針茅、冷蒿、櫛葉蒿的黃邊位置相同,無(wú)芒隱子草黃邊位置前于以上三種植被,黃邊幅值由大到小依次為:短花針茅、冷蒿、無(wú)芒隱子草、櫛葉蒿,黃邊面積由大到小依次為:短花針茅、冷蒿、無(wú)芒隱子草、櫛葉蒿,藍(lán)邊位置由大到小依次為:短花針茅、冷蒿、無(wú)芒隱子草三種植被藍(lán)邊位置均為 524.8nm,后于櫛葉蒿的藍(lán)邊位置 522.5nm,藍(lán)邊振幅由大到小依次為:短花針茅、無(wú)芒隱子草、冷蒿、櫛葉蒿,藍(lán)邊面積由大到小依次為:無(wú)芒隱子草、短花針茅、冷蒿、櫛葉蒿。
5.4.3 連續(xù)統(tǒng)去除光譜曲線及分析
連續(xù)統(tǒng)去除法可以獲得短花針茅、冷蒿、櫛葉蒿、無(wú)芒隱子草細(xì)微的光譜吸收特征差異,圖5為以上四種植物的連續(xù)統(tǒng)去除光譜曲線,短花針茅吸收位置為674.6nm,最大吸收深度為 0.873456,吸收寬度為 214.8nm;冷蒿吸收位置 674.6nm,最大吸收深度為 0.854918,吸收寬度為 217.2nm;櫛葉蒿吸收位置為 674.6nm,最大吸收深度為 0.850233,吸收寬度為 227.2nm;無(wú)芒隱子草吸收位置為 677nm,最大吸收深度為 0.832474,吸收寬度為 209.7nm,可以發(fā)現(xiàn)連續(xù)統(tǒng)去除處理后,短花針茅、冷蒿、櫛葉蒿、無(wú)芒隱子草的光譜差異得到放大。
圖5 四種植物連續(xù)統(tǒng)去除光譜曲線
六、無(wú)人機(jī)高光譜遙感數(shù)據(jù)反射率光譜分析
6.1 植被
對(duì)2018 年無(wú)人機(jī)高光譜遙感采集系統(tǒng) 30m 高度下獲取的植被進(jìn)行反射率光譜曲線提取及光譜特性分析,6 月數(shù)據(jù)代表了植被開(kāi)花期反射率光譜數(shù)據(jù),8 月數(shù)據(jù)代表了植被結(jié)實(shí)期反射率光譜數(shù)據(jù),由圖6 發(fā)現(xiàn)結(jié)實(shí)期的無(wú)人機(jī)高光譜遙感圖像上提取的植被光譜在近紅外波段上反射率光譜數(shù)值高于開(kāi)花期,表現(xiàn)出較強(qiáng)的植被特征。
圖6 無(wú)人機(jī)高光譜遙感圖像上植被反射率光譜曲線
6.2 光照區(qū)植被
隨機(jī)選取2021 年 7 月上旬無(wú)人機(jī)高光譜遙感采集系統(tǒng) 30m 高度下獲取的 4 幅光照區(qū)域植被圖像數(shù)據(jù),各隨機(jī)提取 10 個(gè)植被像元反射率光譜曲線,如圖7 所示,不同顏色反射率光譜曲線代表取自不同像元。整體來(lái)看,不同圖像植被群落的反射率光譜曲線走勢(shì)大致相同,具有一般綠色植被光譜的“峰谷”特征。具體分析各幅圖像植被光譜特征,統(tǒng)計(jì)出藍(lán)谷反射率一般在 5%~10%之間,紅谷反射率一般在5%~20%之間,綠峰反射率一般在 5%~20%之間,近紅外波段反射率一般在 15%~30%之間。
圖7 無(wú)人機(jī)高光譜遙感圖像數(shù)據(jù)光照區(qū)域植被反射率光譜曲線
6.3 陰影區(qū)植被
為了在無(wú)人機(jī)高光譜遙感圖像上荒漠化草原陰影區(qū)域開(kāi)展植被信息提取研究,對(duì)無(wú)人機(jī)高光譜遙感采集系統(tǒng)在 30m 高度下獲取的 2019 年 6 月下旬植被光譜數(shù)據(jù)進(jìn)行反射率光譜曲線提取及光譜特性分析,圖像數(shù)據(jù)上的陰影區(qū)域如圖8 所示,由于陰影區(qū)域呈現(xiàn)黑色,導(dǎo)致在陰影區(qū)域內(nèi)提取綠色植被信息時(shí)存在困難。
圖8 無(wú)人機(jī)高光譜遙感圖像數(shù)據(jù)上的陰影區(qū)域
6.3.1提取陰影區(qū)域植被像元反射率光譜曲線
對(duì)無(wú)人機(jī)高光譜遙感圖像數(shù)據(jù)進(jìn)行輻射校正、濾波降噪、平均光譜等預(yù)處理,在陰影區(qū)域和光照區(qū)域分別提取植被像元反射率光譜,如下圖 9 所示,陰影區(qū)域植被藍(lán)谷反射率約為 3%,紅谷反射率約為 5%、綠峰反射率約為 5%、近紅外反射率約為 15%。
圖9 光照區(qū)域植被與陰影區(qū)域植被的反射率光譜曲線對(duì)比圖
6.4 裸土
隨機(jī)選取 2021 年 7 月上旬無(wú)人機(jī)高光譜遙感采集系統(tǒng) 30m 高度下獲取的 4 幅光照區(qū)域裸土圖像數(shù)據(jù),各隨機(jī)提取 10 個(gè)裸土像元的反射率光譜曲線,如圖10所示,不同顏色光譜曲線代表取自不同像元。在可見(jiàn)光和近紅外波段上,裸土的光譜反射率曲線走勢(shì)大致相同,呈現(xiàn)緩慢上升趨勢(shì),發(fā)現(xiàn)裸土反射率光譜曲線近紅外波段反射率一般在 15%~25%之間。
圖10 無(wú)人機(jī)高光譜圖像數(shù)據(jù)裸土反射率光譜曲線
與地面植被的光譜特征相比,無(wú)人機(jī)采集植被的光譜信息主要有以下規(guī)律:可以觀察到明顯的藍(lán)谷、綠峰、紅谷、紅邊、近紅外波段的反射率平臺(tái)及近紅外波段水分吸收谷等綠色植被的光譜特征;藍(lán)谷、綠峰、紅谷等特征參數(shù)的反射率較高,近紅外波段光譜反射率較低;荒漠化草原無(wú)人機(jī)高光譜遙感圖像上的裸土數(shù)據(jù)同樣受到“尺度效應(yīng)”的影響,與地面土壤的光譜特征相比,無(wú)人機(jī)采集裸土的光譜信息主要有以下規(guī)律:可以發(fā)現(xiàn)在可見(jiàn)光到近紅外波段上反射率光譜曲線增長(zhǎng)較為快速,增長(zhǎng)過(guò)程波動(dòng)較少,近紅外波段反射率較高,原因在于無(wú)人機(jī)高光譜遙感圖像上的裸土像元受到周圍植被光譜影響較小;荒漠化草原無(wú)人機(jī)高光譜遙感圖像上的陰影數(shù)據(jù)包含植被信息,與地面陰影區(qū)域的光譜特征相比,無(wú)人機(jī)采集的陰影區(qū)域光譜信息主要有以下規(guī)律:陰影反射率光譜曲線近紅外波段存在一個(gè)平臺(tái),近紅外波段反射率最高值較高,而地面高光譜遙感圖像上的陰影反射率光譜曲線在近紅外波段仍呈上升趨勢(shì),原因在于無(wú)人機(jī)高光譜遙感圖像上的陰影區(qū)域光譜可能包含了植被信息。
綜合分析荒漠化草原地物遙感數(shù)據(jù)的尺度效應(yīng),由于無(wú)人機(jī)數(shù)據(jù)像元覆蓋的區(qū)域面積較大,提取無(wú)人機(jī)高光譜遙感圖像上的植被光譜是覆蓋面積內(nèi)地物混合像元的綜合反射光譜。無(wú)人機(jī)在野外狀態(tài)采集數(shù)據(jù)時(shí),飛行高度不同對(duì)應(yīng)采集的像元區(qū)域面積不同,導(dǎo)致光譜測(cè)量不可避免存在尺度效應(yīng)問(wèn)題,而地物高光譜特征受到背景等多種因素影響,其光譜曲線與地面對(duì)應(yīng)光譜曲線差異較大。荒漠化草原植被生長(zhǎng)混生稀疏,導(dǎo)致在無(wú)人機(jī)高光譜遙感圖像上存在大量的混合像元。
七、總 結(jié)
本章介紹了光譜信號(hào)的定義及反射率光譜信號(hào)特征提取的三種方法;進(jìn)行了多種地面高光譜遙感數(shù)據(jù)地物的反射率光譜分析,發(fā)現(xiàn)連續(xù)統(tǒng)去除法可以效增大地物的光譜差異;進(jìn)行了無(wú)人機(jī)高光譜遙感數(shù)據(jù)多種地物的反射率光譜分析,創(chuàng)建一種用于擴(kuò)大光照區(qū)域與陰影區(qū)域光譜差異的陰影植被指數(shù) SI,進(jìn)而提出 SI-NDVI 光譜指數(shù)組合方法,用于提取陰影區(qū)域的植被微弱光譜信息,發(fā)現(xiàn)在綠光波段、紅光波段、近紅外波段建立高光譜植被指數(shù)可提取陰影區(qū)域內(nèi)的植被光譜信息。
推薦:
便攜式高光譜成像系統(tǒng)iSpecHyper-VS1000
專門用于公安刑偵、物證鑒定、醫(yī)學(xué)醫(yī)療、精準(zhǔn)農(nóng)業(yè)、礦物地質(zhì)勘探等領(lǐng)域的最新產(chǎn)品,主要優(yōu)勢(shì)具有體積小、幀率高、高光譜分辨率高、高像質(zhì)等性價(jià)比特點(diǎn)采用了透射光柵內(nèi)推掃原理高光譜成像,系統(tǒng)集成高性能數(shù)據(jù)采集與分析處理系統(tǒng),高速USB3.0接口傳輸,全靶面高成像質(zhì)量光學(xué)設(shè)計(jì),物鏡接口為標(biāo)準(zhǔn)C-Mount,可根據(jù)用戶需求更換物鏡。
審核編輯 黃宇
-
無(wú)人機(jī)
+關(guān)注
關(guān)注
229文章
10420瀏覽量
180137 -
高光譜圖像
+關(guān)注
關(guān)注
0文章
25瀏覽量
7186 -
高光譜
+關(guān)注
關(guān)注
0文章
330瀏覽量
9934
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論