精密測量已延伸到需要越來越高電源效率的應用領域。物聯網的到來使這一點尤為明顯,因為物聯網更加需要具有精密測量能力的無線傳感器節點,電池供電的可穿戴健身/醫療設備,以及使用隔離電源供電、4 mA到20 mA環路供電或電池供電現場儀表的工業信號鏈。在這些場景中,電源效率越高,意味著電池使用時間越長,維護越少,電源設計越簡單。
通常,精密測量系統將低壓差穩壓器(LDO)作為其電源方案的一部分,利用它來為精密ADC產生低噪聲電源軌。然而,LDO的功率輸出效率非常低下,大部分功率常常作為熱量損失掉。本文討論為精密逐次逼近型(SAR) ADC實現更高效率電源解決方案的途徑。實現方法是在遲滯模式下使用超低功耗開關穩壓器,并分析性能得失——包括通過某種方式來智能控制開關穩壓器,使之與SAR轉換同步,從而改善噪聲性能。
在中高負載電流(數百mA到數A)的測量系統中,固定頻率或脈寬調制(PWM)開關穩壓器可非常有效地(常常大于90%)產生電源軌。然而,效率雖然高,但代價是會有開關紋波,其頻率通常是固定的,從數百kHz到數MHz。如圖1所示,典型精密SAR ADC的電源抑制比(PSRR)在低頻至約100 kHz時是非常好的——超過此頻率時,PSRR迅速下降。
圖1. SAR ADC模擬電源抑制與頻率的關系
精密SAR ADC以較低吞吐速率運行時,供應VDD線的典型負載電流在數mA或?A范圍——因此,相比于LDO,使用固定頻率開關穩壓器直接為ADC供電在效率上沒有優勢。然而,高效率、超低功耗降壓開關穩壓器可在遲滯模式下工作,其靜態電流非常低。
在遲滯模式下,通過調節恒定峰值電感電流,穩壓器利用PWM脈沖使輸出電壓略高于標稱輸出電壓。當輸出電壓提高到輸出檢測信號超過遲滯上限時,穩壓器進入待機模式。在待機模式下,高端和低端MOSFET及大部分電路都禁用,靜態電流很低,效率性能很高,如圖2所示。待機模式期間,輸出電容將能量送入負載,輸出電壓降低到低于遲滯比較器下限為止。穩壓器喚醒,產生PWM脈沖,再次對輸出充電。
在遲滯情況下,開關紋波頻率與負載電流和LC網絡有關;對于數mA的負載,其在kHz范圍內。在數kHz時,精密ADC的PSRR非常好,能夠很好地抑制/衰減ADC數字輸出端的開關紋波。
圖2. PWM(上圖)和遲滯模式(下圖)——效率與負載電流的關系
以圖3所示電路為例,它使用AD7980ADC;在全吞吐速率(1 MSPS)時,其VDD電流消耗典型值為1.5 mA;若降低吞吐速率,電流消耗會按比例線性下降。這可從圖4看出:采用5 V電壓軌供電時,2.5 V穩壓輸出端的開關頻率紋波為4.5 kHz和50 mV峰峰值。在ADC數字輸出端,ADC以PSRR額定值衰減此紋波。在ADC FFT輸出中,它表現為幅度?120 dBFS、頻率4.5 kHz的雜散。對于ADC的5 V輸入范圍,這相當于
出現在ADC輸出端的這種紋波水平對一個16位轉換器而言是非常低的;5 μV峰峰值對應于16位下的0.07 LSB。這種水平的紋波會被埋在ADC噪底中,需要大量均值操作才能發現,在很多應用中都不會看到它。此輸出紋波對應的PSRR為
該要求與圖1所示相似,AD7980在4.5 kHz時的PSRR約為77 dB。
圖3. AD7980和ADP5300應用電路
圖4. ADP5300為AD7980供電時的遲滯開關紋波(交流耦合),以及1 MSPS吞吐速率時的ADC FFT輸出中的紋波音
若ADC吞吐速率降低到10 kSPS,則ADC的電流消耗按比例線性下降到15 μA (約100倍),ADP5300 的開關頻率紋波相應地降低到46.5 Hz (約100倍),幅度為55 mV峰峰值,如圖5所示。在46 Hz時,該紋波再次在ADC FFT輸出中出現,幅度為?120 dB (5 μV峰峰值),因為在該頻率的PSRR相似。有證據表明存在93 Hz的二次諧波,其幅度更低,為?125 dB。
圖5. ADP5300為AD7980供電時的遲滯開關紋波(交流耦合),以及10 kSPS吞
吐速率時的ADC FFT輸出中的紋波音
圖6對照顯示了ADP5300和LDO在不同ADC吞吐速率時的效率,兩種情況均采用5 V電壓軌供電,調節2.5 V輸出。同預期一樣,開關穩壓器輸送功率的效率遠勝于LDO,在1 MSPS時是90%對50%(針對5 V輸入),在較低ADC吞吐速率/較低電流消耗時保持得也更好,始終高于80%,直至5 kSPS。ADC吞吐速率為1 MSPS且使用LDO時,從5 V電壓軌消耗的電流為1.5 mA或7.5 mW。使用ADP5300時,從5 V電壓軌消耗的電流為828 μA或4.1 mW,即ADC電源的功耗減少3.4 mW或45%。
圖6. ADP5300和LDO的效率與ADC吞吐速率的關系
使用ADP5300作為VDD電源以及10 kHz近滿量程輸入信號(?0.5 dB),AD7980在1 MSPS時的性能如圖7所示。在SNR (91.5 dB)和THD(?103 dB)方面,ADC仍然符合數據手冊規格。然而,ADP5300的4.5 kHz開關紋波會在輸入信號上進行調制,顯示為10 kHz – 4.5 kHz(5.5 kHz)和10 kHz + 4.5 kHz (14.5 kHz)的雜散。這些雜散仍然處于非常低的水平(?116 dBFS),遠小于基波信號的二次諧波引入的THD(其在20 kHz時為?103.8 dBFS)。在16位水平時,這些偽像只是一個LSB的很小一部分,因而在許多應用中,考慮到ADP5300穩壓器的省電優勢,這是完全可以接受的。
圖7. AD7980使用ADP5300作為VDD電源時的性能基波信號周圍可以看到開關紋波調制引起的邊頻帶(10 kHz ±4.5 KHz)
ADP5300開關穩壓器有一個STOP (停止)切換特性,它可以完全消除開關紋波偽像,使其不會出現在ADC FFT輸出中。當STOP處于高電平時,ADP5300的STOP引腳就會阻止SW引腳切換。在對噪聲敏感的ADC轉換過程中,可利用該特性防止切換發生。為實現這一功能,CNV信號和STOP信號應連在一起(參見圖3),并且對來自處理器的CNV信號進行定時,使其在ADC轉換時保持高電平。對于AD7980,此時間最大值為710 ns,轉換在CNV上升沿啟動。結果如圖8所示。這種情況下的紋波頻率更加變化不定,因為只有在特定時間,SW節點才會開啟和調節。另請注意,從STOP信號變為低電平到SW開啟的時間可能為數百ns。圖8中,STOP下降沿后大約850 ns,SW引腳開啟。這意味著,當ADC吞吐速率為1 MSPS時,我們不能使用STOP特性,因為SW引腳將沒有足夠的時間來變為高電平并調節,VDD電源將失去調節而崩潰。STOP功能在吞吐速率為500 kSPS或更低時有效。
圖8. 500 kSPS時使用STOP功能的ADP5300開關紋波(黃色)、CNV/STOP信號(藍色)及ADP5300的SW引腳(粉紅)
從圖9可以看出,使用STOP信號后,ADC噪底中完全不存在開關紋波雜散。當施加10 kHz的輸入信號時,除一般諧波之外,基波周圍沒有調制。然而,當SW引腳禁用(STOP為高電平)時,由于SW引腳上的振鈴,使用STOP特性的效率會下降。對于500 kHz的ADC吞吐速率,ADP5300的效率降至約75%。這仍然顯著高于LDO能夠實現的效率(
圖9. AD7980使用ADP5300作為VDD電源時的性能,STOP特性時序根據轉換周期進行調整
ADP5300等開關穩壓器解決方案與LDO解決方案在成本和PCB面積方面具有一定的可比性。BOM主要增加一個電感,2.2 μH電感可以小到0603封裝,而對于輸入和輸出電容,LDO解決方案同樣需要。因此,在功耗敏感型應用中,它是LDO的有力替代方案,對精度性能并無明顯影響。
當從5 V電源軌為AD7980等精密ADC供電時,ADP5300等高效率、超低功耗開關穩壓器與LDO相比,可節省45%的功耗。這對物聯網應用(延長無線傳感器節點或可穿戴設備的電池使用壽命)、功耗敏感型隔離式工業系統、4 mA至20 mA環路供電系統有很多好處。
-
開關穩壓器
+關注
關注
4文章
794瀏覽量
73481
發布評論請先 登錄
相關推薦
評論