本文將描述精度、分辨率和動態(tài)范圍之間的差異。本文還將揭示信號鏈內(nèi)部的不精確性是如何累積并導(dǎo)致誤差的。定義新設(shè)計的系統(tǒng)參數(shù)時,這些內(nèi)容對于理解如何正確指定或選擇一個ADC有著重要作用。
精度、分辨率與動態(tài)范圍
許多轉(zhuǎn)換器用戶似乎在互換使用精度和分辨率這兩個術(shù)語,但這種做法是錯誤的。精度和分辨率這兩個術(shù)語并不相等,但是具有相關(guān)性,所以,不應(yīng)互換使用。可以把精度和分辨率視為堂兄妹,但不是雙胞胎。
精度就是誤差,或者說測量值偏離真值的幅度。精度誤差可以稱為靈敏度錯誤。分辨率就是測得值的表示或顯示精細度。即使系統(tǒng)的分辨率為12位,也并不意味著它能測量精度為12位的值。
例如,假設(shè)一塊萬用表可以用6位數(shù)來表示測量值。則該萬用表的分辨率為6位,但是,如果最后一位或兩位數(shù)似乎在測量值之間擺動,則分辨率會受到影響,測量精度同樣會受到影響。 系統(tǒng)或信號鏈里的誤差會一直累積,使原始測量值失真。因此,了解系統(tǒng)的動態(tài)范圍也很關(guān)鍵,以便衡量要設(shè)計的信號鏈的精度和分辨率。
我們再以萬用表為例。如果表示位數(shù)為6,則其動態(tài)范圍應(yīng)為120 dB(或6 × 20 dB/十倍頻程)。但要注意的是,最后兩位仍在擺動。因此,真實動態(tài)范圍只有80 dB。這就是說,如果設(shè)計人員要測量1 μV(或0.000001 V)的電壓,則該測量值的誤差可能高達100 μV,因為實際器件的精度僅為100 μV(或0.0001 V或0.0001XX V,其中,XX表示在擺動的最后兩位)。
實際上,描述任何系統(tǒng)的整體精度的方法有兩種:直流和交流。直流精度表示整個給定信號鏈中展現(xiàn)出來的“偏離”累積誤差,這種方法有時稱為“最差條件”分析。交流精度表示整個信號鏈中累積的噪聲誤差項,這項指標決定著系統(tǒng)的信噪比(SNR)。然后把這些誤差累加起來,結(jié)果會使SNR下降,并產(chǎn)生整個設(shè)計更真實的有效位數(shù)(ENOB)。實際上,取得這兩個參數(shù)可以告訴用戶,在靜態(tài)和動態(tài)信號下,系統(tǒng)有多精確。
低頻SNR、ENOB、有效分辨率和無噪聲代碼分辨率之間的關(guān)系
記住,ADC可以“接受”多種信號(通常分為直流或交流),并以數(shù)字方式對信號進行量化。了解ADC在系統(tǒng)中的誤差意味著,設(shè)計人員必須了解要采樣的信號的類型。因此,信號類型取決于如何定義轉(zhuǎn)換器誤差對整個系統(tǒng)的貢獻。這些轉(zhuǎn)換器誤差一般以兩種方式定義:無噪聲代碼分辨率(表示直流類信號)和“信噪比等式”(表示交流類信號)。
由于電阻噪聲和“kT/C”噪聲,所有有源器件(如ADC內(nèi)部電路)都會產(chǎn)生一定量的均方根(RMS)噪聲。即使是直流輸入信號,此噪聲也存在,它是轉(zhuǎn)換器傳遞函數(shù)中代碼躍遷噪聲存在的原因。其更常用的說法為折合到輸入端噪聲。折合到輸入端噪聲通常用將直流輸入施加到轉(zhuǎn)換器時的若干輸出樣本的直方圖來表征。大多數(shù)高速或高分辨率ADC的輸出為一系列以直流輸入標稱值為中心的代碼。為了測量其值,ADC的輸入端接地或連接到一個深度去耦的電壓源,然后采集大量輸出樣本并將其表示為直方圖(有時也稱為“接地輸入”直方圖)-見圖1。由于噪聲大致呈高斯分布,因此可以計算直方圖的標準差σ,它對應(yīng)于有效輸入均方根噪聲,表示為LSB rms。
圖1.轉(zhuǎn)換器折合到輸入端噪聲或ADC“接地輸入”直方圖。
雖然ADC固有的差分非線性(DNL)可能會導(dǎo)致其噪聲分布與理想的高斯分布有細微的偏差,但它至少大致呈高斯分布。如果代碼分布具有較大且獨特的峰值和谷值,則表明存在PC板布局欠佳、接地不良、電源去耦不當?shù)葐栴}。
典型情況下,折合到輸入端噪聲可以表示為均方根量,單位通常是LSB rms。涉及這類量的規(guī)格通常與高分辨率精密型轉(zhuǎn)換器相關(guān),原因在于較低的采樣速率和/或其采集的直流類或低速信號。設(shè)計用于精度測量的Σ-Δ ADC,其分辨率在16至24位之間,其數(shù)據(jù)手冊一般會列出折合到輸入端噪聲、有效分辨率、無噪聲代碼分辨率等規(guī)格,用以描述其直流動態(tài)范圍。
另一方面,面向音頻應(yīng)用的較高頻率的Σ-Δ ADC一般都用總諧波失真(THD)和總諧波失真加噪聲(THD + N)來描述。
逐次逼近型(SAR)轉(zhuǎn)換器涵蓋了廣泛的采樣速率、分辨率和應(yīng)用。它們通常有折合到輸入端噪聲,但對于交流輸入信號,則還有SNR、ENOB、SFDR和THD等規(guī)格。
雖然采樣頻率為數(shù)百MHz或以上的高速轉(zhuǎn)換器(如流水線式轉(zhuǎn)換器)通常以SNR、SINAD、SFDR、ENOB等交流規(guī)格來描述,但它們也能采集直流類信號或低速信號。因此,了解如何從數(shù)據(jù)手冊上列出的交流規(guī)格推算出高速轉(zhuǎn)換器的低頻性能是非常有用的。
側(cè)邊欄討論:SNR等式
理想轉(zhuǎn)換器對信號進行數(shù)字化時,最大誤差為±? LSB,如一個理想N位ADC的傳遞函數(shù)所示。對于任何橫跨數(shù)個LSB的交流信號,其量化誤差可以通過一個峰峰值幅度為q(一個LSB的權(quán)重)的非相關(guān)鋸齒波形來近似計算。對該近似法還可以從另一個角度來看待,即實際量化誤差發(fā)生在±? q范圍內(nèi)任意一點的概率相等。
圖2更詳細地顯示了量化誤差與時間的關(guān)系。一個簡單的鋸齒波形就能提供足夠準確的分析模型。鋸齒誤差的計算公式如下:
圖2.量化噪聲與時間的關(guān)系。
鋸齒誤差波形產(chǎn)生的諧波遠遠超過奈奎斯特帶寬或直流至Fs/2,其中,F(xiàn)s = 轉(zhuǎn)換器采樣速率。然而,所有這些諧波都會折回(混疊)到奈奎斯特帶寬并相加,產(chǎn)生等于q/√12的均方根噪聲。
量化噪聲大致呈高斯分布,均勻分布于目標奈奎斯特帶寬上,其范圍通常為直流至Fs/2。這里假設(shè)量化噪聲與輸入信號不相關(guān)。理論信噪比現(xiàn)在可以通過一個滿量程輸入正弦波來計算:
要理解低速、直流類信號與高速交流類信號規(guī)格量之間的關(guān)系,確實需要一些數(shù)學(xué)知識。所以,請打開大學(xué)里用的數(shù)學(xué)書,翻到后面的標識表。接下來,我們來看看如何理解低頻輸入SNR、ENOB、有效分辨率和無噪聲代碼分辨率之間的關(guān)系。
假設(shè)FSR = ADC滿量程,n = 折合到輸入端噪聲,則(均方根)有效分辨率定義如下:
對于交流分析,則要使用滿量程正弦波輸入。另見上面的側(cè)邊欄討論,其中:
因此,代入等式16,就可推算出ENOB、交流類信號和直流類(低速)信號之間的關(guān)系。或,
總之,對于直流低速信號,系統(tǒng)ENOB約比轉(zhuǎn)換器的無噪聲代碼分辨率大1位(確切為0.92位),比轉(zhuǎn)換器的有效分辨率小2位。
然而,隨著信號速率的加快,或者對于涉及帶寬的交流類信號,轉(zhuǎn)換器的SNR和ENOB會變得與頻率有關(guān),并且在高頻輸入下會下降。
信號鏈中的轉(zhuǎn)換器不精確性
以上我們了解了轉(zhuǎn)換器誤差,接下來,我們將討論信號鏈中的剩余部分,以在系統(tǒng)層面了解這些概念。圖3所示為一個簡單的數(shù)據(jù)采集信號鏈示例。圖中,一個傳感器連傳感器的交流信號先是推過兩級預(yù)調(diào)理放大器,然后,到達要采樣的ADC輸入端。此處的目的是設(shè)計這樣一個系統(tǒng),使其可以精確地表示傳感器信號,精度保持在傳感器原始值的±0.1%之內(nèi)。嗯,似乎頗具挑戰(zhàn)性?
為了設(shè)計出這樣的系統(tǒng),有必要思考有哪些類型的誤差可能會影響傳感器的原始信號,還要想想它們來自信號鏈的哪個部分。設(shè)想一下,在最終對信號采樣時,轉(zhuǎn)換器最后會看到什么。
假設(shè)在此例中,ADC的滿量程輸入為10 V,分辨率為12位。如果轉(zhuǎn)換器是理想的轉(zhuǎn)換器,則可確定其動態(tài)范圍或SNR為74 dB。
圖3.簡單的數(shù)據(jù)采集信號鏈。
SNR = 6.02 (12) + 1.76 = 74 dB (19)
然而,數(shù)據(jù)手冊規(guī)格只會顯示,轉(zhuǎn)換器的SNR為60 dB或9.67ENOB。
ENOB = (SNR – 1.76)/6.02 = (60 – 1.76)/6.02 = 9.67 位 (20)
請注意SNR和ENOB的計算方法:在用數(shù)據(jù)手冊中的SNR數(shù)據(jù)計算ENOB時,設(shè)計人員必須明白的是,該數(shù)據(jù)可能包括,也可能不包括諧波。如果確實包括失真,則可使用SINAD,后者定義為SNR與失真之和,有時稱為THD(總諧波失真)。
表1列出了一些簡單的等值換算,供確定目標系統(tǒng)性能時參考。
其他系統(tǒng)不精確性
要注意上面的信號鏈示例中建議的全部前端組件。正因為轉(zhuǎn)換器精度達到或超過系統(tǒng)定義的系統(tǒng)精度規(guī)格,所以,還有更多的不精確性要理解——即前端、電源、任何其他外部影響或環(huán)境。
如上圖3所示,這種信號鏈的設(shè)計可能非常復(fù)雜,超過了本文討論的范圍。但可以對與這種信號鏈相關(guān)的不精確性/誤差進行簡單總結(jié),如表2所示。
在任何信號鏈里都存在許多誤差,更不用說電纜和其他外部影響,這些因素也可能在很大程度上決定著這種系統(tǒng)的設(shè)計。無論累積誤差怎樣,最終都會與信號一起在轉(zhuǎn)換器端被采樣——假設(shè)誤差不會大到能屏蔽被采樣信號的程度!
在用轉(zhuǎn)換器進行設(shè)計時,要記住,對于系統(tǒng)精度的定義,等式包括兩個部分。一是上面描述的轉(zhuǎn)換器本身,二是用來在轉(zhuǎn)換器之前調(diào)理信號的所有組件。記住,每丟失1位,動態(tài)范圍就會減少6 dB。推論就是,每獲得1位,系統(tǒng)靈敏度就會增長2倍。因此,前端要求的精度規(guī)格要遠遠高于用于對信號采樣的轉(zhuǎn)換器精度。
為了展示這一點,我們采用與圖3所示相同的前端設(shè)計。假設(shè),前端本身的不精確性為20 mV p-p;即是圖5所示累積噪聲。系統(tǒng)精度仍然定義為0.1%。同樣的12位轉(zhuǎn)換器,其精度能否達到定義的系統(tǒng)規(guī)格要求?答案是不能,原因如下。
圖5. 前端噪聲已定義的簡單數(shù)據(jù)采集信號鏈。
以下是其計算方法,其中所用ADC的SNR = 60 dB。
注意,20 mV的噪聲可使系統(tǒng)靈敏度下降1位或6 dB,使系統(tǒng)性能從要求的60 dB降至54 dB。為了解決這個問題,可能應(yīng)該選擇一種新型轉(zhuǎn)換器,以便維持60 dB或0.1%的系統(tǒng)精度。我們選擇一款A(yù)DC,其SNR/動態(tài)范圍為70 dB,或者,其ENOB為11.34位,看看是否有用。
看起來性能并無多大變化。為什么?因為前端的噪聲太大,無法實現(xiàn)0.1%的精度,雖然轉(zhuǎn)換器的性能本身要遠遠好于規(guī)格要求。需要改變前端設(shè)計,以便實現(xiàn)需要的性能。這種情況如下面的圖6所示。知道最后一個配置示例為什么不起作用嗎?設(shè)計人員并不能簡單地選擇一款更好的ADC來提高系統(tǒng)的整體性能。
圖6. 前端噪聲與12位70 dB ADC噪聲比較。
加總情況
前面選擇的10 V滿量程、12位ADC的動態(tài)范圍為60 dB,可實現(xiàn)0.1%的精度。這意味著,總累積誤差需要小于10 mV或10 V/(1060/20),才能達到0.1%的精度要求。因此,必須更換前端組件,以把前端誤差降至9 mV p-p,如圖7所示,所用轉(zhuǎn)換器的SNR為70 dB。
圖7. 低前端噪聲與12位70 dB ADC噪聲比較。
如果要使用14位、74 dB ADC,如圖8所示,則對前端的要求甚至可以進一步放寬。但這種折衷可能會導(dǎo)致成本增加。這些折衷要根據(jù)具體的設(shè)計和應(yīng)用進行評估。舉例來說,更值得的做法可能是加大對容差更小、漂移更低的電阻的投入,而不是投資采購性能更強的ADC。
圖8. 前端噪聲與14位74 dB ADC噪聲比較。
分析總結(jié)
前文簡要介紹了精度誤差、分辨率和動態(tài)范圍之間的關(guān)系,這些指標為針對具體應(yīng)用選擇轉(zhuǎn)換器提供了不同的參考,這些應(yīng)用則要求達到一定的測量精度。了解所有組件誤差以及這些誤差對信號鏈的影響至關(guān)重要。注意,并非所有組件均生而平等!創(chuàng)建囊括所有這些誤差的電子表是插入不同信號鏈組件的簡便方法,可更快進行評估并決定組件的權(quán)衡取舍,如表2所示。在不同組件的成本之間進行權(quán)衡時,尤其如此。另外,有關(guān)如何生成這種電子表格的討論將在本系列第三部分進行。最后,請記住,單純增加信號鏈中轉(zhuǎn)換器的性能或分辨率無法提升測量精度。如果依舊存在同樣數(shù)量的前端噪聲,精度將不會得到改善。只會讓這些噪聲或不精確性測量達到更精細的程度,并最終可能讓設(shè)計人員的老板付出更多的成本。
-
轉(zhuǎn)換器
+關(guān)注
關(guān)注
27文章
8783瀏覽量
148862 -
分辨率
+關(guān)注
關(guān)注
2文章
1074瀏覽量
42136 -
精度
+關(guān)注
關(guān)注
0文章
262瀏覽量
20172
發(fā)布評論請先 登錄
相關(guān)推薦
分辨率轉(zhuǎn)換器器件噪聲處理

TI AD轉(zhuǎn)換器增加精度和分辨率時使用的PCB布線技巧
AD轉(zhuǎn)換器的精度和分辨率增加時使用的布線技巧
ADC精度:精度與分辨率的理解
詳述ADC精度和分辨率的概念差異
ADC的分辨率和精度一樣
詳述ADC精度和分辨率的差異
NI PXI-5922:業(yè)內(nèi)分辨率和動態(tài)范圍最高的數(shù)字化儀

精度、分辨率和動態(tài)范圍之間的差異

高速模數(shù)轉(zhuǎn)換器精度、分辨率和動態(tài)范圍之間的差異

計算數(shù)據(jù)轉(zhuǎn)換器的有效分辨率
高速模數(shù)轉(zhuǎn)換器精度、分辨率和動態(tài)范圍之間的差異

評論