色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

吳恩達眼中深度學習七劍客,你都認識嗎?

dKBf_eetop_1 ? 來源:互聯網 ? 作者:佚名 ? 2017-10-12 09:22 ? 次閱讀
毫無疑問,深度學習成為了風靡全球的人工智能新技術。在許多領域,深度學習都已經被證明是極為有效的,如視覺處理、語音和音頻處理、自然語言處理、機器人技術等。

就在8月份,吳恩達在他新創建的網站 deeplearning.ai 發布了一系列主題為“ The Heros in Deep Learning ”的訪談視頻。吳恩達面對面采訪了七位大神,熱心人士整理了這七位大神的基本情況,這里匯總了一下,拿出來供大家學習!

Geoffrey Hinton

Geoffrey Hinton 是一位在英國出生的計算機學家,其在神經網絡方面的貢獻起到了奠基作用,因為被稱為“神經網絡之父”,他是第一批使用廣義反向傳播算法研究人員之一。Geoffrey Hinton 是反向傳播算法和對比散度算法的發明人之一,也是深度學習的有力推動者,目前供職于多倫多大學與 Google。作為人工智能領域的奠基人之一,截止到 2016 年 11 月,Geoffrey Hinton 的署名文章報告共計超過300 篇。盡管如此,他經歷了人工智能的衰落期,甚至連導師都不看好,但他一直對神經網絡保持信心,終于在漫長的黑夜過后,直到計算機的性能達到深度學習的要求,Geoffrey Hinton 才開始在學術界以外得到自己應得的廣泛認可,迎來了人工智能的黎明。

Ian Goodfellow

Ian Goodfellow 是 Google 研究員,與他人合著了《Deep Learning》 教科書,該書在github上有正版電子書。他最受矚目的成就是他提出了生成對抗網絡 ( GAN ),從提出以后一直是熱門的課題。因此被譽為“ GANs 之父”,Facebook AI 研究主管 Yann LeCun 稱 GAN 是“過去 20 年來深度學習方面最酷的想法”。 Ian Goodfellow 被推舉為人工智能領域的頂級專家。

Yoshua Bengio

Yoshua Bengio 是 微軟人工智能研究戰略顧問、蒙特利爾大學計算機科學與運籌學系(DIRO)教授、蒙特利爾學習算法研究所(MILA)負責人、CIFAR 項目的共同負責人、加拿大統計學習算法研究主席。Yoshua Bengio 教授是深度學習領域的奠基人之一,也是經典圖書《Learning Deep Architectures for AI》的作者。Yoshua Bengio 與 Geoff Hinton 以及 Yann LeCun 教授一起引領了 2006 年始的深度學習復興。他的研究工作主要聚焦在高級機器學習方面,致力于用其解決人工智能問題。目前他是僅存的幾個仍然全身心投入在學術界的深度學習教授之一!

Andrej Karpathy

Andrej Karpathy 讀博期間師從現任谷歌首席科學家李飛飛,研究卷積神經網絡在計算機視覺、自然語言處理上的應用,以及在這兩個領域的交叉應用。他被人們廣泛所知是由于他和李飛飛一起設計開發了“用于視覺識別的卷積神經網絡”(CS231n)課程,并親自教授,是斯坦福大學廣受歡迎的深度學習課程之一。此外,他還是特斯拉的AI首次專家,特斯拉為人所知的自動駕駛就是由他主導的!

Pieter Abbeel

Pieter Abbeel的導師是 Andrew Ng。主要研究將深度強化學習應用到機器人上。2008 年在加州大學伯克利分校擔任電氣工程和計算機科學系擔任教授。Pieter Abbeel 是用深度強化學習做運動規劃的領軍人物,過去 15 年, Pieter Abbeel 一直在尋找讓機器人學習的方法。2010 年他和他的學生對 BRETT(Berkeley Robot for the Elimination of Tedious Tasks,用于解決繁雜任務的伯克利機器人)進行了編程,使其可以拿起不同大小的毛巾、弄清楚它們的形狀并將它們整齊疊好。

Ruslan Salakhutdinov

Ruslan Salakhutdinov師從 Geoffrey Hinton,研究的領域主要包括深度學習、概率圖譜模型以及大規模優化等。Ruslan Salakhutdinov 2011 年在多倫多大學擔任助理教授,2016 年 2 月轉到卡內基梅隆大學擔任副教授。同年,出任蘋果人工智能研究院首任總監.006 年 7 月,Ruslan Salakhutdinov 作為第二作者,與作為第一作者的導師 Geoffrey Hinton 在 Nature 雜志上合作發表了論文《用 NN 實現數據的降維》(Reducing the Dimensionality of Data with Neural Networks),這篇論文提出了通過最小化函數集對訓練集數據的重構誤差,自適應地編解碼訓練數據的算法 deep autoencoder,作為非線性降維方法在圖像和文本降維實驗中明顯優于傳統方法,證明了深度學習方法的正確性,引起了整個學術界對深度學習的興趣,才有了近十年來深度學習研究的突飛猛進和突破。

Yann LeCun

吳恩達并沒有采訪到 Yann LeCun,但這位大神在深度學習領域的地位不容小覷,他號稱“卷積網絡神經之父”,師從 Geoffrey Hinton。于 1988 年加入位于新澤西州的 AT&T 貝爾實驗室,1993 年研發了一套能夠識別手寫數字的識別系統,命名為 LeNet ,被全世界多家銀行用于識別支票。1996 年他成為圖像處理研究部的主任,2003 年加入紐約大學任教。2013 年,他被 Facebook 聘請為人工智能實驗室(FAIR)主任,專注于一個獨特的目標,即開發具有與人類同等智能水平的電腦。同時,仍在紐約大學擔任教授。1989 年,Yann LeCun 在貝爾實驗室提出了卷積神經網絡(convolutionalneuralnetwork,CNN)技術,發表了論文《反向傳播算法應用于手寫郵政編碼識別》(Backpropagation Applied to Handwritten Zip Code),并展示如何使用它來大幅度提高手寫識別能力,因此被譽為“卷積神經網絡之父”。卷積神經網絡是近年發展起來的一種高效識別方法。神經網絡正在迅速改變互聯網最大的參與者,包括 Google、Facebook、Microsoft。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1792

    文章

    47354

    瀏覽量

    238833
  • 深度學習
    +關注

    關注

    73

    文章

    5504

    瀏覽量

    121246
  • 吳恩達
    +關注

    關注

    0

    文章

    26

    瀏覽量

    7118

原文標題:微博 Qzone 微信 吳恩達眼中的 Deep Learning七劍客

文章出處:【微信號:eetop-1,微信公眾號:EETOP】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    Linux三劍客之Sed:文本處理神器

    關于linux三劍客 grep,過濾關鍵字信息數據。主要是用于查文本內的數據 sed ,對文本數據進行編輯,修改原文件內容 awk,對文件數據過濾,提取,并且能實現,格式化輸出 awk對文
    的頭像 發表于 12-16 15:58 ?234次閱讀
    Linux三<b class='flag-5'>劍客</b>之Sed:文本處理神器

    NPU在深度學習中的應用

    隨著人工智能技術的飛速發展,深度學習作為其核心驅動力之一,已經在眾多領域展現出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為深度學習
    的頭像 發表于 11-14 15:17 ?647次閱讀

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,用最省力的方式,加速的 Pytorch 深度學習訓練。
    的頭像 發表于 10-28 14:05 ?220次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學習</b>訓練的方法

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發表于 10-27 11:13 ?407次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習是AI大模型的基礎 技術支撐 :深度
    的頭像 發表于 10-23 15:25 ?869次閱讀

    下天山》之“利刃”:“新一代”漏洞掃描管理系統

    。該平臺個方面功能尤其強大,堪稱梁羽生的武俠小說《下天山》之“利刃”: ?日月?:多
    的頭像 發表于 09-09 11:23 ?378次閱讀

    認識貼片電阻嗎,對他了解多少?

    認識貼片電阻嗎,對他了解多少?
    的頭像 發表于 08-27 15:49 ?500次閱讀
    <b class='flag-5'>你</b><b class='flag-5'>認識</b>貼片電阻嗎,<b class='flag-5'>你</b>對他了解多少?

    凱攜手AI創島推動中國人工智能產業發展

    日前,希凱一行走進AI創島,與AI創島創始團隊展開了深度交流學習,對人工智能的現狀與發展做了分析與探討,期待將來攜手開啟人工智能在顯示
    的頭像 發表于 08-15 15:07 ?784次閱讀

    簡單認識深度神經網絡

    深度神經網絡(Deep Neural Networks, DNNs)作為機器學習領域中的一種重要技術,特別是在深度學習領域,已經取得了顯著的成就。它們通過模擬人類大腦的處理方式,利用多
    的頭像 發表于 07-10 18:23 ?1050次閱讀

    深度學習中的時間序列分類方法

    時間序列分類(Time Series Classification, TSC)是機器學習深度學習領域的重要任務之一,廣泛應用于人體活動識別、系統監測、金融預測、醫療診斷等多個領域。隨著深度
    的頭像 發表于 07-09 15:54 ?1001次閱讀

    深度學習與nlp的區別在哪

    方法,它通過模擬人腦的神經網絡結構,實現對數據的自動特征提取和學習深度學習的核心是構建多層的神經網絡結構,每一層包含大量的神經元,這些神經元通過權重連接,實現對輸入數據的逐層抽象和
    的頭像 發表于 07-05 09:47 ?961次閱讀

    深度學習與傳統機器學習的對比

    在人工智能的浪潮中,機器學習深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管它們屬于機器
    的頭像 發表于 07-01 11:40 ?1420次閱讀

    深度解析深度學習下的語義SLAM

    隨著深度學習技術的興起,計算機視覺的許多傳統領域取得了突破性進展,例如目標的檢測、識別和分類等領域。近年來,研究人員開始在視覺SLAM算法中引入深度
    發表于 04-23 17:18 ?1306次閱讀
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>學習</b>下的語義SLAM

    FPGA在深度學習應用中或將取代GPU

    現場可編程門陣列 (FPGA) 解決了 GPU 在運行深度學習模型時面臨的許多問題 在過去的十年里,人工智能的再一次興起使顯卡行業受益匪淺。英偉 (Nvidia) 和 AMD 等公司的股價也大幅
    發表于 03-21 15:19

    詳解深度學習、神經網絡與卷積神經網絡的應用

    在如今的網絡時代,錯綜復雜的大數據和網絡環境,讓傳統信息處理理論、人工智能與人工神經網絡面臨巨大的挑戰。近些年,深度學習逐漸走進人們的視線,通過深度
    的頭像 發表于 01-11 10:51 ?2067次閱讀
    詳解<b class='flag-5'>深度</b><b class='flag-5'>學習</b>、神經網絡與卷積神經網絡的應用
    主站蜘蛛池模板: www国产av偷拍在线播放| 一本道的mv中文字幕| 午夜dj免费中文字幕| 97精品伊人久久大香线蕉app| 国产又黄又硬又粗| 午夜小视频免费观看| 国产99久久久国产精品免费看| 欧美video巨大粗暴18| 18国产精品白浆在线观看免费| 精品无码人妻一区二区免费AV| 亚洲成人黄色片| 国产一区二区在线免费观看| 天堂网久久| 国产精品久久久久久人妻精品流| 热99re久久精品国产首页| AV亚洲精品少妇毛片无码| 男人插曲女人的叫声| 999久久久国产| 欧美手机在线| 成年美女黄网站色app| 色欲AV蜜臀AV在线观看麻豆| 光棍天堂在线a| 无码不卡中文字幕在线观看| 国产精品成人在线播放| 香蕉59tv视频| 九九热精品免费观看| 中文字幕一区中文亚洲| 美女打开双腿扒开屁股男生| 99re久久热在线视频| 啪啪后入内射日韩| 国产1000部成人免费视频| 校草让我脱了内裤给全班看| 果冻传媒2021在线观看| 在线亚洲视频无码天堂| 内射白嫩少妇超碰| 成人无码国产AV免费看| 午夜一级视频| 久久视频这里只精品99热在线观看| 99er热精品视频国产免费| 色AV色婷婷96人妻久久久| 国产在线观看免费|